客户流失预测--基于R语言C5.0

本文使用R语言的C5.0算法预测电信运营商的客户流失,通过数据预处理、模型训练和测试,展示流失预测过程。结果显示模型预测准确率超过98%,并探讨了模型优化的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于中国各大电信运营商而言,在整体市场规模相对稳定的情况下,能否维护好现有的客户是保证其收益的重中之重。因此,预测客户流失的可能性与否,直接关系到运营商的客户维护的重点正确与否。本文将基于”狗熊会“基础案例:收集客户流失,来演示基于C5.0算法的客户流失预测,数据下载 点击打开链接

一、数据结构查看与初步分析

读入并查看数据(见下图),一共包含10个变量,其中ID为每个用户的唯一标识,在进行预测分析时需要删除;流失用户为因变量,”0“表示未流失,”1“表示已流失。

>customers<-read.csv("customer.csv",stringsAsFactors= FALSE)


查看整体的用户流失情况(见下图),可以发现流失用户数较未流失用户数多

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值