报告主要内容
-
发展引擎 :
-
公共云基础设施 :大模型训练依赖大规模基础设施,公共云具备建设万卡集群能力、提供高效率低成本服务且全面保障安全,可有效应对算力短缺困境,如阿里云百炼平台,是大模型技术发展和应用落地的优选路径。
-
开源生态数据供给 :对大模型诞生具基础性作用,是技术发展和应用推广的加速器,可提升安全性、强化业界信任度,如 Hugging Face 开源社区、阿里云通义 Qwen 系列开源模型,促进大模型算法发展与安全。
-
高质量数据供给生态 :合成数据是解决训练数据供给不足的突破口,应构建更匹配模型部署要求的高质量应用数据生态,包括数据上云、检索增强等,如阿里达摩院在医疗、农业领域的应用,是具备持续竞争力的基础。
-
-
安全治理架构 :确保大模型安全、可靠、可信赖、可用,需从多元融合的治理规范、多角色全周期的治理措施、多方协同的治理环境等方面构建策略。融合法律法规、标准规范、伦理道德原则,为大模型技术研发、应用开发和用户使用提供准则,确保符合社会正义和公共利益。
-
治理措施 :
-
技术风险治理 :包括模型训练阶段的数据处理、算法优化,服务上线阶段的模型评估、系统安全,内容生成阶段的输入输出审核等。
-
应用风险治理 :涉及风险分类分级、识别渠道明确、治理能力提升等方面。
-
防范风险行为 :如用户协议、身份验证、行为监测等。
-
-
多方协同治理价值 :大模型开发应用需多方参与,协同治理可提出治理思路方案、动态管控风险、推动治理方法创新,其特点包括快速响应、迭代改进、广泛参与,在治理技术、规范、人才等方面对产业发展有重要贡献。
报告发布意义
-
行业发展角度 :报告深入分析大模型技术及其应用面临的安全风险,总结提炼当前的产业最佳实践,为人工智能行业的安全治理提供了可借鉴的方法和路径,有助于推动大模型技术的健康发展,促进其在各行业的广泛应用和商业化落地。
-
企业责任角度 :阿里巴巴集团副总裁钱磊介绍,阿里秉持 “负责任的技术” 理念,此次报告发布体现了其作为大型科技公司,在坚守科技伦理和安全底线的同时,致力于推动新技术走进千行百业,发挥技术对经济社会发展的推动作用。