Spark是一个用于实时处理的开源集群计算框架。 它拥有蓬勃发展的开源社区,是目前最活跃的Apache项目。 Spark提供了完整编程的接口,具有数据并行性和容错性。
运行图
那么作为大数据开发中不可或缺的部分,它还具有哪些功能呢?
1、支持多种语言
Spark提供Java,Scala,Python和R中的高级API .Spark代码可以用任何这些语言编写。 它在Scala和Python中提供了一个shell。 可以通过./bin/spark-shell和Python shell通过./bin/pyspark从已安装的目录访问Scala shell。
编程语言
2、运行速度快
Spark的运行速度比Hadoop MapReduce快100倍,适用于大规模数据处理。 Spark能够通过分区实现此速度。 它使用分区管理数据,这些分区有助于以最小的网络流量并行化处理分布式数据。
3、多种格式
Spark支持多种数据源,如Parquet,JSON,Hive和Cassandra,CSV和RDBMS表,还包括通常的格式,如文本文件、CSV和RDBMS表。 Data Source API提供了一种可插拔的机制,用于通过Spark SQL获取结构化数据。
4、实时计算
Spark的计算是实时的,并且由于其内存计算具有低延迟。 Spark专为大规模可扩展性设计,Spark团队已经记录了运行具有数千个节点的生产集群的用户,并支持多种计算模型。
实时计算
5、整合Hadoop
Apache Spark提供与Hadoop的平滑兼容性。 这对所有从事Hadoop大数据工程师来说都是一个福音。 Spark是Hadoop的MapReduce的潜在替代品,而Spark能够使用YARN在现有的Hadoop集群上运行资源调度。
当然除了在这些方面的应用,spark还涉及很多其他的技术特点和功能,这足够体现它的伟大之处,是大数据开发学习中的重中之重。
需要spark及其他大数据开发学习资料可以在评论区留言哦,或者直接加小编微信:mipi946,先到先得