SVM超平面推导

目标:SVM模型是为求得使几何间隔最大的超平面: y=wx+b y = w · x + b
由点面之间的距离:
yi(wxi+b)||w||=γi y i ( w x i + b ) | | w | | = γ i

其中 γ γ 是几何间隔,w 是超平面法向量, b b 是超平面截距,yi 是样本 i i 的标记。

考虑到几何问题与函数问题的关系:

(1)Maxw,b    γ=γ^||w||(2)S.t.    yi(wxi+b)||w||γ    i=1,2,3...N

因为: γ^ γ ^ 的取值不会影响上述不等式的成立,所以不妨取其为1。
注意到, Max:1||w||Min:12||w||2w,b M a x : 1 | | w | | ⇔ M i n : 1 2 | | w | | 2 ( 对 w , b 参 数 ) 等价,于是:

问题变为:

Minw,bS.t.    12||w||2    yi(wxi+b)10    i=1,2,3.,N(3)(4) (3) M i n w , b         1 2 | | w | | 2 (4) S . t .         y i ( w x i + b ) − 1 ⩾ 0         i = 1 , 2 , 3 … . , N

构建拉格朗日函数其中, α=(α1,α2,α3,....αi,)T   i=1,2,3...N α = ( α 1 , α 2 , α 3 , . . . . α i , ) T       i = 1 , 2 , 3... N

L(w,b,α)==12||w||2i=1Nα(yi(wxi+b)1)12||w||2i=1Nαyi(wxi+b)+i=1Nα(5)(6) (5) L ( w , b , α ) = 1 2 | | w | | 2 − ∑ i = 1 N α ( y i ( w · x i + b ) − 1 ) (6) = 1 2 | | w | | 2 − ∑ i = 1 N α y i ( w · x i + b ) + ∑ i = 1 N α

根据拉格朗日对偶性,原始问题的对偶问题是 极大 极少问题:

maxαminw,bL(w,b,α) max α min w , b L ( w , b , α )

可以分两步进行,先求L 对 w,b 的最小值,再求L对 α α 的最大值

(1)求 minw,bL(w,b,α):对 w,b 求偏导,令其等于0:

wL(w,b,α)=bL(w,b,α)=wiNα yixi=0iNα yi=0(7)(8) (7) ▽ w L ( w , b , α ) = w − ∑ i N α   y i x i = 0 (8) ▽ b L ( w , b , α ) = ∑ i N α   y i = 0

得到:
w=i=1Nα yixii=1Nα yi=0(A)(B) (A) w = ∑ i = 1 N α   y i x i (B) ∑ i = 1 N α   y i = 0

将(A)式代入拉格朗日函数,并使用(B)式,可以得到: minw,bL(w,b,α) min w , b L ( w , b , α )

L(w,b,α)==12i=1Nj=1Nαiαjyiyj(xixj)i=1Nαiyi((i=1Nαjxjyj)xi+b)+i=1Nαi12i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαi(509)(510) (509) L ( w , b , α ) = 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i · x j ) − ∑ i = 1 N α i y i ( ( ∑ i = 1 N α j x j y j ) ⋅ x i + b ) + ∑ i = 1 N α i (510) = − 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i · x j ) + ∑ i = 1 N α i

(2)求 minw,bL(w,b,α)α min w , b L ( w , b , α ) 对 α 的极大值,即对偶问题::

maxα  S.t.  12i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαii=1Nα yi=0(9)(10) (9) max α     − 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i · x j ) + ∑ i = 1 N α i (10) S . t .     ∑ i = 1 N α   y i = 0

由对偶问题转化为:
minα  S.t.  12i=1Nj=1Nαiαjyiyj(xixj)i=1Nαii=1Nα yi=0(11)(12) (11) min α     1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i · x j ) − ∑ i = 1 N α i (12) S . t .     ∑ i = 1 N α   y i = 0

对(11)式关于 αi α i 的偏导并令其为 0,结合约束条件可以解得 α α ∗
由于原始问题与对偶问题满足共解条件,所以可以使用α*代入式(A)和式(B)
求得(C)
w=i=1Nαiyixi w ∗ = ∑ i = 1 N α i ∗ y i x i

由KKT互补条件知:
αi(yi(wxi+b)1=0      i=1,2,3,..N α i ∗ ( y i ( w ∗ x i + b ∗ ) − 1 ) = 0             i = 1 , 2 , 3 , … … . . N

因为 w w ∗ 不为0,显然有 αj>0 α j ∗ > 0 存在,对于这样的 αj α j ∗ j j 可以使下式成立
(15)    yj(w·xj+b)1=0(16)    yj(w·xj+b)yj2=0(17)    wxj+byj=0

将(C)式代入上式,可以得到:
i=1Nαiyixixj+byj=0 ∑ i = 1 N α i ∗ y i x i x j + b ∗ − y j = 0

b=yji=1Nαiyixixj b ∗ = y j − ∑ i = 1 N α i ∗ y i x i x j

至此,超平面求出,即:

i=1Nαiyi(xxi)+b=0 ∑ i = 1 N α i ∗ · y i ( x · x i ) + b ∗ = 0

分类决策函数可以写成
f(x)=sign(i=1Nαiyi(xxi)+b) f ( x ) = s i g n ( ∑ i = 1 N α i ∗ · y i ( x · x i ) + b ∗ )

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
支持向量机是一种二分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,可以通过求解凸二次规划问题来实现。下面是简单的推导过程: 假设训练数据集为$T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}$,其中$x_i∈R^n$为特征向量,$y_i∈{-1,1}$为类别标记。线性可分支持向量机的基本模型为: $$ f(x)=w^Tx+b $$ 其中,$w$为权值向量,$b$为偏置,$w$和$b$确定了分离超平面。对于输入空间中的任意点$x$,判定其类别的函数为: $$ \operatorname{sign}(f(x)) $$ 为了使得分类器能够正确分类训练数据集中的所有样本,需要满足以下约束条件: $$ \begin{cases} w^Tx_i+b\geq1, & y_i=1 \\ w^Tx_i+b\leq-1, & y_i=-1 \end{cases} $$ 即对于正样本,其函数间隔$w^Tx_i+b$应大于等于1;对于负样本,其函数间隔$w^Tx_i+b$应小于等于-1。将上述约束条件转化为: $$ y_i(w^Tx_i+b)\geq1, i=1,2,...,N $$ 为了使得间隔最大化,需要最小化$w$的平方范数,即: $$ \frac{1}{2}||w||^2 $$ 于是,线性可分支持向量机的优化问题可以表示为: $$ \min_{w,b}\frac{1}{2}||w||^2 \\ s.t. \quad y_i(w^Tx_i+b)\geq1, i=1,2,...,N $$ 这是一个凸二次规划问题,可以通过拉格朗日乘子法求解。最终得到的决策函数为: $$ f(x)=\operatorname{sign}(\sum_{i=1}^N\alpha_iy_ix_i^Tx+b) $$ 其中,$\alpha_i$为拉格朗日乘子,满足$\alpha_i\geq0$,且$\sum_{i=1}^N\alpha_iy_i=0$。对于训练数据集中的样本点,若其对应的$\alpha_i>0$,则称其为支持向量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SongpingWang

你的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值