这题O(n^2)的解法比较容易,模拟即可 ,而O(n)的做法分为:
1.扩展卢卡斯定理 和 中国剩余定理
2. 欧拉定理 和 质因数分解
关于这题最基本的思考是倒立杨辉三角的组合数性质:
关于这个性质的分析如下,由杨辉三角组织的基本递推公式:
和组织形式(画的有点丑 见谅
a b c d e f
a + b b + c c + d d + e e + f
a + 2b + c b + 2c + d c + 2d + e d + 2e + f
a + 3b + 3c + d b + 3c + 3d + e c + 3d + 3e + f
a + 4b + 6c + 4d + e b + 4c + 6d + 4e + f
a + 5b + 10c + 10d + 5e + f
能得到对于 ,那么要到达最后一行,他有多种路径可以选择。(下图以b为例)
形象化地理解的话,也就是第i个数,他要达到最后一层,那么他必然要左移i步,而有种可能。
基本思考结束。