关于力扣2021 数组的三角和组合数学解法的分析1.0(基本思考

        这题O(n^2)的解法比较容易,模拟即可 ,而O(n)的做法分为:

        1.扩展卢卡斯定理 和 中国剩余定理

        2. 欧拉定理质因数分解

          关于这题最基本的思考是倒立杨辉三角的组合数性质:

          关于这个性质的分析如下,由杨辉三角组织的基本递推公式:

        

s_{i,j} = s_{i-1,j} + s_{i-1,j+1} ( 0<= j<n-i,i >= 1 )

        和组织形式(画的有点丑 见谅

                                        a                b                c                d                e                f        

                                        a + b         b + c           c + d         d + e         e + f

                                       a + 2b + c   b + 2c + d    c + 2d + e   d + 2e + f 

                                       a + 3b + 3c + d  b + 3c + 3d + e  c + 3d + 3e + f

                                       a + 4b + 6c + 4d + e    b + 4c + 6d + 4e + f 

                                       a + 5b + 10c + 10d + 5e + f 

                                             

        能得到对于s_{0,j} ,那么要到达最后一行,他有多种路径可以选择。(下图以b为例)

形象化地理解的话,也就是第i个数,他要达到最后一层,那么他必然要左移i步,而有C_{n-1}^{i}种可能。

基本思考结束。

在解决 LeetCode 上的轮转数组问题时,需要考虑多个关键点,包括如何处理边界情况、如何避免额外的空间使用以及如何高效地进行元素移动。以下是几种常见的解法: ### 解法一:使用临时数组 这种方法的基本思路是将数组中最后 `k` 个元素存储到一个临时数组中,然后将原数组中的前面部分向右移动 `k` 个位置,最后将临时数组中的元素放回到原数组的前面。 ```java class Solution { public void rotate(int[] nums, int k) { int length = nums.length; k = k % length; // 处理k大于数组长度的情况 int[] temp = new int[k]; // 将最后k个元素存储到临时数组中 for (int i = 0; i < k; i++) { temp[i] = nums[length - k + i]; } // 将原数组前面的元素向右移动k个位置 for (int i = length - 1; i >= k; i--) { nums[i] = nums[i - k]; } // 将临时数组中的元素放到原数组的前面 for (int i = 0; i < k; i++) { nums[i] = temp[i]; } } } ``` 这种方法的时间复杂度为 O(n),空间复杂度为 O(k)[^2]。 --- ### 解法二:三次反转 这种解法不需要额外的空间,而是通过三次反转操作来实现数组的轮转。具体步骤如下: 1. 反转数组的后 `k` 个元素。 2. 反转数组的前 `n-k` 个元素。 3. 最后反转整个数组。 ```c void reverse(int* nums, int left, int right) { while (left < right) { int tmp = nums[left]; nums[left] = nums[right]; nums[right] = tmp; left++; right--; } } void rotate(int* nums, int numsSize, int k) { if (k > numsSize) { k %= numsSize; } reverse(nums, numsSize - k, numsSize - 1); // 右边倒置 reverse(nums, 0, numsSize - k - 1); // 左边倒置 reverse(nums, 0, numsSize - 1); // 整体倒置 } ``` 这种方法的时间复杂度为 O(n),空间复杂度为 O(1)[^3]。 --- ### 解法三:直接计算新索引 这种方法利用了模运算来计算每个元素的新位置,并将其复制到新的数组中。之后再将新数组的内容复制回原数组。 ```java public class Solution { public void rotate(int[] nums, int k) { int length = nums.length; int[] temp = new int[length]; // 将原数组的元素放到新数组中对应的位置 for (int i = 0; i < length; i++) { temp[(i + k) % length] = nums[i]; } // 将temp数组的内容复制回nums数组 for (int i = 0; i < length; i++) { nums[i] = temp[i]; } } } ``` 这种方法的时间复杂度为 O(n),空间复杂度为 O(n)[^4]。 --- ### 解法四:数组切片(Python) 在 Python 中,可以利用数组切片来实现轮转数组的操作。然而需要注意的是,在函数内部修改数组时,必须直接对原数组进行操作,而不是创建一个新的数组引用。 ```python class Solution: def rotate(self, nums: List[int], k: int) -> None: n = len(nums) k = k % n # 处理k大于数组长度的情况 nums[:] = nums[-k:] + nums[:-k] ``` 这种方法的时间复杂度为 O(n),空间复杂度为 O(n)[^1]。 --- ### 相关问题 1. 如何在不使用额外空间的情况下实现轮转数组? 2. 为什么在轮转数组问题中需要对 `k` 进行取模操作? 3. 在使用数组切片方法时,为什么不能直接赋值给 `nums` 而要使用 `nums[:]`? 4. 三次反转法的具体实现原理是什么? 5. 使用临时数组的方法直接计算新索引的方法有什么区别?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值