- 博客(25)
- 收藏
- 关注
原创 Ubuntu22.04虚拟环境安装CUDA10.1, CUDNN和pytorch
首先理顺一下CUDA,CUDNN,cudatoolkit的关系。安装CUDA就是安装cudatoolkit,CUDA中包含cudatoolkit. 然后安装CUDA对应版本的CUDNN。找到对应版本的CUDA,点进去,然后再进行相应的选择得到最终的版本,下载下来之后按照命令行进行安装和配置。不同的神经网络有不同的配置,有些从前公开的github项目,一些包升级之后的版本缺少相关的函数,老版本又不兼容,只能在虚拟环境中重新安装环境。可以在网上查找与CUDA对应的pytorch进行下载和安装。
2024-04-04 18:17:28 531
原创 基于pycharm的detectron2的tensorboard使用
1.visdom与tensorboard的选择tensorboard最早是针对TensorFlow进行可视化的工具,而pytorch没有可以进行可视化的工具。后来,有大牛针对pytorch的使用开发出了tensorboardx,其实就是让pytorch也可以使用tensorboard.而在detectron2中,是从torch.util.tensorboard中使用tensorboard.这好像是pytorch官方与tensorboard的合作。对于pytorch,这二者只是在引用时的路径不同,其他的都
2022-03-06 17:10:48 2230 2
原创 关于旋转船舶热力图的生成操作概略过程
好久之后再次使用生成热力图的程序,居然忘记了怎么使用,摸索了一会才搞通。所以这次就简单记录一下使用过程,方便以后快速使用。代码在之前都已经编好,可是借鉴的代码都忘了在哪了,只记得百度热力图的生成,找到一些自然图像的生成方式,分类得分的热力图还好说,但是回归的热力图因为涉及到旋转框IOU的计算,又找了一些旋转IOU计算的方法,网上不是所有的计算方法都可以,因为这里涉及到tensor的反向传播,后来找到了一个方法可使用。具体的应用是在grad_cam中的__call__方法中,有一行代码是写明groun
2021-12-15 11:09:46 2833
原创 detectron2的demo运行来生成测试图像的结果
在detectron2的官网上有代码示例,但是因为有时候登录detectron2特别不稳定,在一定时间间隔内根本登录不上去,所以为了以后使用方便,在这里记录一下demo的具体使用方法。cd demo/python demo.py --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \ --input input1.jpg input2.jpg \ [--other-options] -
2021-12-13 14:43:34 2816
原创 记录从DOTA的原数据集挑选某一类别并转换成voc和coco格式
这篇文章是记录一下自己准备储罐数据的过程,以便后续再遇到类似的情况能快速实现。里面设计到的一些描述可能只有自己能看懂,所以如果您看到了这篇文章,可能对您的帮助不打。DOTA的原数据分为了train,val,test,但是test的图像没有标注数据。所以我们先分别对train和val进行筛选,选择有储罐的图像和对应的标签。该代码在RRPN-PYTORCH项目里面的/home/wt/RRPN_pytorch/maskrcnn_benchmark/data/DOTA_Pre-processing_tool
2021-09-07 17:04:02 1895 3
原创 将自己voc格式的旋转目标数据集转换为coco格式并重写dataloader
上一篇博客提到了voc转成coco格式的代码,现在要把旋转边框的voc转成coco格式,因为水平框和我自己的旋转框的voc的节点名字稍有不同,所以需要注意对读取xml里面节点名字的改变。然后在读取目标框坐标的时候注意增加一个角度。还有就是我的xml文件是用rolable标注的,得到的坐标是浮点数,在转换时需要注意先转换成float然后再转成int。将标注文件转换好之后,我们还需要将coco格式的文件夹结构给处理好,这里不再赘述。然后就需要修改dataloader...
2020-07-19 23:05:53 1060 3
原创 detectron2利用别的数据集跑通训练的debug过程
在得到了coco格式的数据集之后,想把程序进行debug了解一下整体的运行过程和框架结构。找到开始训练的文件,里面有配置文件的选择,模型的建立,数据的加载,优化器,损失函数等的设置。这里我就有个问题了,官网里给的是tools文件夹下的运行train_net.py文件。然而我在一个知乎里面看到一般使用 tools/plain_train_net.py 来训练模型。 最简单的训练结构是 SimpleTrainer().train()。 一般使用的类是 DefaultTrainer().train
2020-07-03 11:00:19 1052 3
原创 基于detectron2运行debug前的数据准备
detectron2中提供了旋转框相关的代码。但需要把现有的代码都改成旋转框相关的代码,这里记录一下。1.backbone的选择。我希望我可以自由选择R-50和R-101。并且在FPN的基础上对网络结构进行修改R-50和R-101的选择应该可以在配置文件中进行选择。是否选择FPN也可以在配置文件中选择。我在另一个框架下是这么选择的,等下看一下detectron2的框架是怎么进行选择的。...
2020-06-13 14:41:26 395
原创 pytorch的重新安装和detectron2的重新编译
我因为我自己的CUDA的版本和detectron2虚拟环境下的cudatoolkit的版本不一样,所以将虚拟环境下的pytorch卸载了并重新安装。1、使用conda卸载Pytorchconda uninstall pytorchconda uninstall libtorch2、使用pip卸载Pytorchpip uninstall torch有点搞不清楚这两步是任选一个还是按顺序都要进行。我都进行了,也没出现什么错误。卸载完之后再重新安装pytorch。因为我的dete
2020-06-12 21:24:57 3011
原创 detectron2的demo运行
当detectron2都安装好了之后,就需要运行一下demo来检测一下代码和相应的库安装是否正确。我是按照https://blog.csdn.net/sophia_xw/article/details/102561410中的代码来进行demo测试的。我的测试图片是百度出来的。...
2020-06-12 21:14:02 2508 2
原创 detectron2 安装记录
这次想使用detectron2框架来训练数据,打算把具体的安装过程记录下来,以便之后再安装其他的框架的时候可以借鉴。CUDA和CUDNN之前本电脑已经安装过,这里不赘述了。1.用conda创建一个虚拟环境anaconda创建虚拟环境:conda create -n pytorch13 python=3.6.8,进入环境,conda activate pytorch13pytorch13是自己起的虚拟环境的名字,python=3.6.8是指定python的版本,这个必须要有。进入环境时若失败
2020-06-09 23:56:29 683
原创 detectron2关于coco数据集的格式以及注册
首先我们应该知道coco数据集的格式。https://blog.csdn.net/sophia_xw/article/details/102954932?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.nonecase&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLe
2020-06-09 14:52:37 4018
原创 simple-faster-rcnn-pytorch代码理解
刚开始接触深度学习目标检测的时候,买了一本书“深度学习卷积神经网络从入门到精通”,这本书里面介绍的一些经典目标检测的理论和基于tensorflow的代码。但是当时根本就代码根本就看不懂,虽然有好多人说要学会看代码,但根本就进不去,所以我就练习吴恩达深度学习和cs231n的习题作业。当时好像花了挺长时间,应该是两个月,但是现在回想起来感觉很不值。因为里面的练习都是很基础的,简单的神经网络和卷积神经网...
2019-11-02 21:48:32 934
原创 Ubuntu16.04.6LTS的安装
本人之前第一次使用Ubuntu16.04.6.现在记录一下,供自己以后再安装时参考,也让以后刚接触Ubuntu的小白快速入门。下面就简单记录我遇到的一些问题和选择。首先,应该是所有笔记本都可以安装Linux系统。有的客服说他们的电脑不支持,有的电子商城卖电脑的说Linux系统可能对一些驱动不友好。但是经过网上浏览并和朋友交流,还是可以装的。最让我感到没问题的就是,我问了一个老师,他说当时他...
2019-09-10 19:25:31 4912 3
原创 掩码到边界框的转换
本篇是对Airbus Ship Detection Challenge的kernels中From masks to bounding boxes的一个总结。在将掩码转换乘图像的格式之后,导入skimage.measure,对掩码区域进行标签(1,2,3.......)(原理是对连通域进行分类标签),然后对标签的区域进行regionprops,得到目标狂的左上角和右下角的坐标值。利用c...
2019-07-18 20:52:30 669
原创 Airbus Ship Detection Challenge 总结
个人想做光学遥感图像的船舶等目标的提取,发现了kaggle上的这个比赛。虽然这个比赛已经结束了很长的时间了,但是官网上有关于比赛的数据,讨论和相关代码,个人觉得对基于深度学习的目标检测的进阶有很大的帮助。我前期参加了深度之眼的课程,在某个视频中,老师说,前期学习的时候要理论,代码,比赛最好一起进行,刚开始可能比较困难,但是坚持下来就好了。我经历了之后觉得说的甚有道理。我刚开始自学的时候,网上有人说...
2019-07-15 18:54:08 1350
原创 面部关键点检测
今天做了面部关键点检测的作业,这里先简单记录一下。给出的训练集是以excel形式保存的。里面记录了每个关键点的坐标值和图像的像素值。测试集也是excel形式存储的,里面只有测试图像的像素值。对图像进行预处理后,建立好自己的网络架构,这里的损失函数选择的是均方误差(mean squared error),评价标准是均方绝对值误差(mean absolute error)。对于测试图像,...
2019-07-09 15:15:30 694
原创 RNN入门理解和LSTM
今天刚看了点RNN和LSTM。把现在理解的知识点先记录下来。以后到要用到的时候再详细了解,再把相应的知识记录下来。因为我主要研究目标检测方向,这里先点明一下RNN在目标检测方面的应用:可以有效的利用图像上下文的信息。RNN网络结构主要分为输入层,隐藏层,输出层。把隐藏层展开:t-1,t,t+1表示时间序列,St表示样本在时间t的记忆。,St = f(W*St-1 +U*Xt...
2019-07-09 10:01:13 216
原创 GAN学习总结
GAN 网络有两个神经网络,一个生成网络,一个区分网络。区分网络就是我们平常看到的一般分类网络,进行输入,然后得到输入的标签。生成网络是根据输入的噪声,将噪声尽可能的转换成已有的训练图像。噪声的分布有一定规律。将训练集的图像和生成的图像都输入到区分网络中,区分网络的目标是判断训练集的图像为标签为1,生成的图像标签为0。区分网络的损失函数分为两部分,一部分是将训练集的图像尽可能的判断...
2019-07-08 21:35:57 510
原创 Anaconda及Pycharm下载及安装和专业版Pycharm的破解
1.Anaconda的下载登录www.anaconda.com/download.下载anaconda至本地下载完成后,安装即可。中间有两步要注意2.Pycharm的下载去Pycharm的官方网站上下载。有两种版本。可以下载专业版,有破解的教程。需要注意的安装步骤如下:专业版的Pycharm的破解步骤,请查找微信公众号:裸睡的猪。亲测有效...
2019-04-09 17:01:05 2219
原创 VGG
VGG的网络结构大致总结一下,就是增大网络深度,利用较小的3*3的卷积核,并尝试使用1*1的卷积核。1*1的卷积核是线性变换,但在该卷积核后面紧跟着非线性激活函数,所以1*1卷积核增大了网络的非线性作用。然后是如何进行训练。我们一条一条的过。看文献的时候,太多,容易蒙。对训练图像大小的定义首先是单尺度图像的训练。作者在文中定义了两个单尺度。是通多定义最小边的大小来定义图像尺度的大小。...
2019-03-11 14:15:53 2278
原创 Visualizing and Understanding Convolutional Networks
这篇文章的目的主要是想探明CNN的中间层是怎么变化的,为什么CNN的分类、目标检测等功能这么好。文章中主要是对特征层进行反卷积(根据计算过程,翻译成转置卷积更好),将特征层映射到像素空间中(原文中图2的灰色部分),观察特征图映射之后的变化和特征。原文图2中也将原图的相应部分展示出来。文中并没有详细说明转置卷积的操作步骤,只说是借鉴了另一篇文章。我从另外一篇介绍看到一个不错的,先贴图如下。...
2019-03-07 14:35:28 245
转载 RCNN
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/WoPawn/article/details/52133338 ...
2018-08-30 15:42:30 132
转载 R-CNN论文详解
转载自:https://blog.csdn.net/WoPawn/article/details/52133338 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog...
2018-08-30 15:00:22 161
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人