线性分类的Jupyter实践

线性分类的Jupyter实践

一、准备工作
1、安装Anaconda

2、安装实验所需包
在安装好Anaconda后,可以在开始处打开
打开后创建一个命令虚拟环境
在这里插入图片描述
创建好后打开终端
在这里插入图片描述
在终端写入以下命令下载相关包

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple 包名
此处安装的包包括numpy、pandas、sklearn、matplotlib

二、实验步骤

1、打开终端
在这里插入图片描述
2、取萼片的长宽作为特征进行分类
以下命令可一次性全部复制,然后粘贴到终端,终端会自动一行一行处理
(1)、导入相关包

#导入相关包
import numpy as np
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import datasets
from sklearn import preprocessing
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

(2)、获取数据集

# 获取所需数据集
iris=datasets.load_iris()
#每行的数据,一共四列,每一列映射为feature_names中对应的值
X=iris.data
print(X)
#每行数据对应的分类结果值(也就是每行数据的label值),取值为[0,1,2]
Y=iris.target
print(Y)

(3)、对数据进行处理

#归一化处理
X = StandardScaler().
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值