例题
力扣题目来源:https://leetcode.cn/problems/two-sum/
说明:
给定一个整数数组 nums
和一个整数目标值 target
,请你在该数组中找出 和为目标值 target
的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
示例说明
示例 1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
示例 2:
输入:nums = [3,2,4], target = 6
输出:[1,2]
示例 3:
输入:nums = [3,3], target = 6
输出:[0,1]
提示:
- 2 ≤ n u m s . l e n g t h ≤ 104 2 \leq nums.length \leq 104 2≤nums.length≤104
- − 109 ≤ n u m s [ i ] ≤ 109 -109 \leq nums[i] \leq 109 −109≤nums[i]≤109
- − 109 ≤ t a r g e t ≤ 109 -109 \leq target \leq 109 −109≤target≤109
- 只会存在一个有效答案
进阶:
你可以想出一个时间复杂度小于
O
(
n
2
)
O(n^2)
O(n2) 的算法吗?
解题
方法一:暴力枚举
思路及算法
最容易想到的方法是枚举数组中的每一个数 x
,寻找数组中是否存在
t
a
r
g
e
t
−
x
target - x
target−x。
当我们使用遍历整个数组的方式寻找 t a r g e t − x target - x target−x 时,需要注意到每一个位于 x 之前的元素都已经和 x 匹配过,因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 t a r g e t − x target - x target−x。
代码
C++
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
int n = nums.size();
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
if (nums[i] + nums[j] == target) {
return {i, j};
}
}
}
return {};
}
};
Python3
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
n = len(nums)
for i in range(n):
for j in range(i + 1, n):
if nums[i] + nums[j] == target:
return [i, j]
return []
复杂度分析
时间复杂度: O ( N 2 ) O(N^2) O(N2),其中 NN 是数组中的元素数量。最坏情况下数组中任意两个数都要被匹配一次。
空间复杂度: O ( 1 ) O(1) O(1)。
方法二:哈希表
思路及算法
注意到方法一的时间复杂度较高的原因是寻找 t a r g e t − x target - x target−x的时间复杂度过高。因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引。
使用哈希表,可以将寻找 t a r g e t − x target - x target−x 的时间复杂度降低到从 O ( N ) O(N) O(N) 降低到 O ( 1 ) O(1) O(1)。
这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 t a r g e t − x target - x target−x,然后将 x x x插入到哈希表中,即可保证不会让 x x x 和自己匹配。
本题呢,则要使用map
,那么来看一下使用数组和set
来做哈希法的局限。
- 数组的大小是受限制的,而且如果元素很少,而哈希值太大会造成内存空间的浪费。
set
是一个集合,里面放的元素只能是一个key
,而两数之和这道题目,不仅要判断y是否存在而且还要记录y的下标位置,因为要返回x
和y
的下标。所以set
也不能用。
此时就要选择另一种数据结构:map
,map
是一种key value
的存储结构,可以用key
保存数值,用value
在保存数值所在的下标。
C++中map,有三种类型:
映射 | 底层实现 | 是否有序 | 数值是否可以重复 | 能否更改数值 | 查询效率 | 增删效率 |
---|---|---|---|---|---|---|
std::map | 红黑树 | key有序 | key不可重复 | key不可修改 | O ( log n ) O(\log n) O(logn) | O ( log n ) O(\log n) O(logn) |
std::multimap | 红黑树 | key有序 | key可重复 | key不可修改 | O ( log n ) O(\log n) O(logn) | O ( log n ) O(\log n) O(logn) |
std::unordered_map | 哈希表 | key无序 | key不可重复 | key不可修改 | O ( 1 ) O(1) O(1) | O ( 1 ) O(1) O(1) |
std::unordered_map
底层实现为哈希表,std::map
和std::multimap
的底层实现是红黑树
这道题目中并不需要key有序,选择std::unordered_map 效率更高!
解题思路动画如下:
代码
C++
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int, int> hashtable;
for (int i = 0; i < nums.size(); ++i) {
auto it = hashtable.find(target - nums[i]);
if (it != hashtable.end()) {
return {it->second, i};
}
hashtable[nums[i]] = i;
}
return {};
}
};
Python3
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
hashtable = dict()
for i, num in enumerate(nums):
if target - num in hashtable:
return [hashtable[target - num], i]
hashtable[nums[i]] = i
return []
复杂度分析
时间复杂度: O ( N ) O(N) O(N),其中 N 是数组中的元素数量。对于每一个元素 x x x,我们可以 O ( 1 ) O(1) O(1) 地寻找 t a r g e t − x target - x target−x。
空间复杂度: O ( N ) O(N) O(N),其中 N N N 是数组中的元素数量。主要为哈希表的开销。