栈和队列5——逆波兰表达式求值

题目

题目说明

根据 逆波兰表示法,求表达式的值。

有效的算符包括 + 、 − 、 ∗ 、 / +、-、*、/ +/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。

注意 两个整数之间的除法只保留整数部分。

可以保证给定的逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 0 0 的情况。

示例 1:

输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例 2:

输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

示例 3:

输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
  ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

提示:

  • 1 < = t o k e n s . l e n g t h < = 104 1 <= tokens.length <= 104 1<=tokens.length<=104
  • t o k e n s [ i ] 是一个算符( tokens[i] 是一个算符( tokens[i]是一个算符(“+”、“-”、“*” 或 “/”),或是在范围 [ − 200 , 200 ] [-200, 200] [200,200] 内的一个整数.

解题

逆波兰表达式由波兰的逻辑学家卢卡西维兹提出。逆波兰表达式的特点是:没有括号,运算符总是放在和它相关的操作数之后。因此,逆波兰表达式也称后缀表达式。

方法一:栈

逆波兰表达式严格遵循「从左到右」的运算。计算逆波兰表达式的值时,使用一个栈存储操作数,从左到右遍历逆波兰表达式,进行如下操作:

  1. 如果遇到操作数,则将操作数入栈;

  2. 如果遇到运算符,则将两个操作数出栈,其中先出栈的是右操作数,后出栈的是左操作数,使用运算符对两个操作数进行运算,将运算得到的新操作数入栈。

整个逆波兰表达式遍历完毕之后,栈内只有一个元素,该元素即为逆波兰表达式的值。

动画展示

在这里插入图片描述

代码展示

c++

class Solution {
public:
    int evalRPN(vector<string>& tokens) {
        stack<int> stk;
        int n = tokens.size();
        for (int i = 0; i < n; i++) {
            string& token = tokens[i];
            if (isNumber(token)) {
                stk.push(atoi(token.c_str()));
            } else {
                int num2 = stk.top();
                stk.pop();
                int num1 = stk.top();
                stk.pop();
                switch (token[0]) {
                    case '+':
                        stk.push(num1 + num2);
                        break;
                    case '-':
                        stk.push(num1 - num2);
                        break;
                    case '*':
                        stk.push(num1 * num2);
                        break;
                    case '/':
                        stk.push(num1 / num2);
                        break;
                }
            }
        }
        return stk.top();
    }

    bool isNumber(string& token) {
        return !(token == "+" || token == "-" || token == "*" || token == "/");
    }
};

Python3

class Solution:
    def evalRPN(self, tokens: List[str]) -> int:
        op_to_binary_fn = {
            "+": add,
            "-": sub,
            "*": mul,
            "/": lambda x, y: int(x / y),   # 需要注意 python 中负数除法的表现与题目不一致
        }

        stack = list()
        for token in tokens:
            try:
                num = int(token)
            except ValueError:
                num2 = stack.pop()
                num1 = stack.pop()
                num = op_to_binary_fn[token](num1, num2)
            finally:
                stack.append(num)
            
        return stack[0]

复杂度分析

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 tokens \textit{tokens} tokens 的长度。需要遍历数组 tokens \textit{tokens} tokens 一次,计算逆波兰表达式的值。

  • 空间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 tokens \textit{tokens} tokens 的长度。使用栈存储计算过程中的数,栈内元素个数不会超过逆波兰表达式的长度。

方法二:数组模拟栈

方法一使用存储操作数。也可以使用一个数组模拟栈操作。

如果使用数组代替栈,则需要预先定义数组的长度。对于长度为 n n n 的逆波兰表达式,显然栈内元素个数不会超过 n n n,但是将数组的长度定义为 n n n 仍然超过了栈内元素个数的上界。那么,栈内元素最多可能有多少个?

对于一个有效的逆波兰表达式,其长度 n n n 一定是奇数,且操作数的个数一定比运算符的个数多 1 1 1 个,即包含 n + 1 2 \frac{n+1}{2} 2n+1个操作数和 n − 1 2 \frac{n-1}{2} 2n1个运算符。考虑遇到操作数和运算符时,栈内元素个数分别会如何变化:

  • 如果遇到操作数,则将操作数入栈,因此栈内元素增加 1 1 1 个;

  • 如果遇到运算符,则将两个操作数出栈,然后将一个新操作数入栈,因此栈内元素先减少 2 2 2 个再增加 1 1 1 个,结果是栈内元素减少 1 1 1个。

由此可以得到操作数和运算符与栈内元素个数变化的关系:遇到操作数时,栈内元素增加 1 1 1个;遇到运算符时,栈内元素减少 1 1 1个。

最坏情况下, n + 1 2 \frac{n+1}{2} 2n+1 个操作数都在表达式的前面, n − 1 2 \frac{n-1}{2} 2n1个运算符都在表达式的后面,此时栈内元素最多为 n + 1 2 \frac{n+1}{2} 2n+1个。在其余情况下,栈内元素总是少于 n + 1 2 \frac{n+1}{2} 2n+1个。因此,在任何情况下,栈内元素最多可能有 n + 1 2 \frac{n+1}{2} 2n+1个,将数组的长度定义为 n + 1 2 \frac{n+1}{2} 2n+1 即可。

具体实现方面,创建数组 stack \textit{stack} stack 模拟栈,数组下标 0 0 0 的位置对应栈底,定义 index \textit{index} index 表示栈顶元素的下标位置,初始时栈为空, index = − 1 \textit{index}=-1 index=1。当遇到操作数和运算符时,进行如下操作:

  • 如果遇到操作数,则将 \textit{index}index 的值加 11,然后将操作数赋给 \textit{stack}[\textit{index}]stack[index];

  • 如果遇到运算符,则将 index \textit{index} index 的值减 1 1 1,此时 stack [ index ] \textit{stack}[\textit{index}] stack[index] stack [ index + 1 ] \textit{stack}[\textit{index}+1] stack[index+1] 的元素分别是左操作数和右操作数,使用运算符对两个操作数进行运算,将运算得到的新操作数赋给 stack [ index ] \textit{stack}[\textit{index}] stack[index]

整个逆波兰表达式遍历完毕之后,栈内只有一个元素,因此 index = 0 \textit{index}=0 index=0,此时 stack [ index ] \textit{stack}[\textit{index}] stack[index] 即为逆波兰表达式的值。

动画展示

在这里插入图片描述

代码展示

Python3
class Solution:
    def evalRPN(self, tokens: List[str]) -> int:
        op_to_binary_fn = {
            "+": add,
            "-": sub,
            "*": mul,
            "/": lambda x, y: int(x / y),   # 需要注意 python 中负数除法的表现与题目不一致
        }

        n = len(tokens)
        stack = [0] * ((n + 1) // 2)
        index = -1
        for token in tokens:
            try:
                num = int(token)
                index += 1
                stack[index] = num
            except ValueError:
                index -= 1
                stack[index] = op_to_binary_fn[token](stack[index], stack[index + 1])
            
        return stack[0]
c++
class Solution {
public:
   int evalRPN(vector<string>& tokens) {
       int n = tokens.size();
       vector<int> stk((n + 1) / 2);
       int index = -1;
       for (int i = 0; i < n; i++) {
           string& token = tokens[i];
           if (token.length() > 1 || isdigit(token[0])) {
               index++;
               stk[index] = atoi(token.c_str());
           } else {
               switch (token[0]) {
                   case '+':
                       index--;
                       stk[index] += stk[index + 1];
                       break;
                   case '-':
                       index--;
                       stk[index] -= stk[index + 1];
                       break;
                   case '*':
                       index--;
                       stk[index] *= stk[index + 1];
                       break;
                   case '/':
                       index--;
                       stk[index] /= stk[index + 1];
                       break;
               }
           }
       }
       return stk[index];
   }
};

复杂度分析

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 tokens \textit{tokens} tokens的长度。需要遍历数组 tokens \textit{tokens} tokens 一次,计算逆波兰表达式的值。

  • 空间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 tokens \textit{tokens} tokens 的长度。需要创建长度为 n + 1 2 \frac{n+1}{2} 2n+1 的数组模拟栈操作。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

joker-wt

我的心愿是——世界和平

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值