图像模糊操作
- 均值模糊—适用于去随机噪声
- 中值模糊 —适用于去除椒盐噪点
- 自定义模糊 —适用于图像增强,锐化等
"""
模糊操作
--中值模糊
--均值模糊
--自定义模糊
"""
import cv2
import numpy as np
img = cv2.imread('img.jpg')
cv2.namedWindow('Image', cv2.WINDOW_AUTOSIZE)
cv2.imshow('Image', img)
# 均值模糊
dst = cv2.blur(img, (3, 3))
cv2.imshow('Blur', dst)
# 中值模糊
dst_m = cv2.medianBlur(img, 5)
cv2.imshow('medianBlur', dst_m)
# 自定义模糊
k = np.array([[-1, -1, -1], [-1, -1, -1], [9, 0, 0]])  # 需要尽量保证和为奇数,
dst_c = cv2.filter2D(img, -1, kernel=k) # 第二个参数为目标图像深度,-1则表示和原图像一样
cv2.imshow('dst_c', dst_c)
cv2.waitKey(0)
cv2.destroyAllWindows()
实验效果图

总结
能够看着代码教程,一点一点的用,但是背后的原理还是不是很清楚。卷积,核 什么的。
 
                   
                   
                   
                   
                             本文深入探讨了图像处理中的模糊技术,包括均值模糊、中值模糊及自定义模糊的应用场景与效果。通过Python与OpenCV实现,展示了如何有效去除随机噪声、椒盐噪点,并进行图像增强与锐化。
本文深入探讨了图像处理中的模糊技术,包括均值模糊、中值模糊及自定义模糊的应用场景与效果。通过Python与OpenCV实现,展示了如何有效去除随机噪声、椒盐噪点,并进行图像增强与锐化。
           
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   3287
					3287
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            