【OpenCV】(均值、中值、自定义)模糊操作

1.模糊操作概念

  模糊操作分类:
  1.均值模糊
  2.中值模糊
  3.自定义模糊
  模糊操作基本原理:
  1.模糊原理:离散卷积
  2.定义好每个卷积核,不同卷积核达到不同的卷积效果
  3.迷糊是卷积的一种表象
  卷积原理:
          在这里插入图片描述

2.均值、中值、自定义模糊

2.1 均值模糊cv.blur

  对随机噪声有很好的处理效果

import cv2 as cv
import numpy as np
"均值模糊:"
def blur_demo(image):
    dst=cv.blur(image,(1,10))#卷积核大小为(1,10)
    cv.imshow('blur image',dst)

src=cv.imread(r'D:\Project\Opencv\Learning01\lina.png'')
cv.namedWindow('input image',cv.WINDOW_AUTOSIZE)

cv.imshow("origin image",src)
blur_demo(src)

cv.waitKey(0)
cv.destroyAllWindows()

在这里插入图片描述

2.2 中值模糊cv.medianBlur

  对椒盐噪声有很好的处理效果,椒盐噪声也称为脉冲噪声,是图像中经常见到的一种噪声,它是一种随机出现的白点或者黑点,可能是亮的区域有黑色像素或是在暗的区域有白色像素(或是两者皆有)

import cv2 as cv
import numpy as np
"中值模糊:"
def blur_demo(image):
    dst=cv.medianBlur(image,5)
    cv.imshow('blur image',dst)

src=cv.imread(r'D:\Project\Opencv\Learning01\lina.png')
cv.namedWindow('input image',cv.WINDOW_AUTOSIZE)

cv.imshow("origin image",src)
blur_demo(src)

cv.waitKey(0)
cv.destroyAllWindows()

在这里插入图片描述

2.3 自定义模糊cv.filter2D

  自定义模糊需要,自定义卷积核kernel、应用cv.filter2D

import cv2 as cv
import numpy as np
"自定义模糊:"
def blur_demo(image):
    ''''''
    '''自定义卷积核'''
    # kernel=np.ones([5,5],np.float32)/25
    kernel=np.array([[0,-1,-0],[-1,5,-1],[0,-1,0]],np.float32)#自定义卷积实现锐化
    '''自定义模糊'''
    dst=cv.filter2D(image,-1,kernel)
    cv.imshow('blur image',dst)

src=cv.imread(r'D:\Project\Opencv\Learning01\angelababy.jpg')
cv.namedWindow('input image',cv.WINDOW_AUTOSIZE)

cv.imshow("origin image",src)
blur_demo(src)

cv.waitKey(0)
cv.destroyAllWindows()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值