更多资料获取
📚 个人网站:ipengtao.com
数据清洗是数据处理过程中至关重要的一部分。Python拥有许多强大的库,用于数据清洗和预处理,使得数据分析人员能够有效处理、转换和清洗数据。本文将介绍几个最常用的Python库,展示它们的功能和提供一些详细的示例代码。
1. Pandas
Pandas是一个强大的数据处理库,提供了广泛的数据结构和工具,用于快速、简单地处理结构化数据。
以下是一些Pandas常用的数据清洗功能及其示例代码:
读取和展示数据
Pandas可以轻松读取各种数据源,并对其进行展示。
import pandas as pd
# 读取CSV文件
data = pd.read_csv('data.csv')
# 展示数据前5行
print(data.head())
缺失值处理
Pandas提供了多种方法来处理缺失值,如填充、删除等。
# 填充缺失值
data.fillna(0, inplace=