Python 数据清洗库详解

更多资料获取

📚 个人网站:ipengtao.com


数据清洗是数据处理过程中至关重要的一部分。Python拥有许多强大的库,用于数据清洗和预处理,使得数据分析人员能够有效处理、转换和清洗数据。本文将介绍几个最常用的Python库,展示它们的功能和提供一些详细的示例代码。

1. Pandas

Pandas是一个强大的数据处理库,提供了广泛的数据结构和工具,用于快速、简单地处理结构化数据。

以下是一些Pandas常用的数据清洗功能及其示例代码:

读取和展示数据

Pandas可以轻松读取各种数据源,并对其进行展示。

import pandas as pd

# 读取CSV文件
data = pd.read_csv('data.csv')

# 展示数据前5行
print(data.head())

缺失值处理

Pandas提供了多种方法来处理缺失值,如填充、删除等。

# 填充缺失值
data.fillna(0, inplace=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值