Python pandas的describe函数参数详解

更多资料获取

📚 个人网站:ipengtao.com


在数据分析和数据预处理过程中,了解数据集的基本统计信息是非常重要的。pandas 库提供了一个名为 describe() 的函数,可以生成数据集的描述性统计信息。本文将详细介绍 describe() 函数的各种参数及其用法,帮助更好地理解和应用这一功能。

describe() 函数概述

describe() 函数是 pandas 中的一个统计方法,用于生成数据集的基本描述性统计信息,包括均值、标准差、最小值、最大值、25%、50% 和 75% 等。默认情况下,它只会统计数值型数据的统计信息,对于非数值型数据会输出计数、唯一值数、出现频率最高的值和频率等。

参数详解

1 percentiles 参数

percentiles 参数用于指定所需的百分位数,默认值为 [.25, .5, .75],即输出 25%,50% 和 75% 的百分位数。

import pandas as pd

data = {
   'A': [1, 2, 3, 4, 5]}
df = pd.DataFrame(data)

# 指定输出 10%,50% 和 90% 的百分位数
print(df.describe(percentiles=[.1, .5, .9]))

2 include 参数

include 参数用于指定要统计的数据类型,可选值为 allnumberobject,默认为 None。如果设置为 all,则会统计所有数据类型;如果设置为 number,则只会统计数值型数据;如果设置为 object,则只会统计非数值型数据。

import pandas as pd

data = {
   'A': [1, 2, 3, 4, 5], 'B': ['a', 'b', 'c', 'd', 'e']}
df = pd.DataFrame(data)

# 只统计数值型数据
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值