golang手动管理内存

作者:John Graham-Cumming.   原文点击此处。翻译:Lubia Yang(已失效)

前些天我介绍了我们对Lua的使用,implement our new Web Application Firewall

另一种在CloudFlare (作者的公司)变得非常流行的语言是Golang。在过去,我写了一篇 how we use Go来介绍类似Railgun的网络服务的编写。

用Golang这样带GC的语言编写长期运行的网络服务有一个很大的挑战,那就是内存管理。

为了理解Golang的内存管理有必要对run-time源码进行深挖。有两个进程区分应用程序不再使用的内存,当它们看起来不会再使用,就把它们归还到操作系统(在Golang源码里称为scavenging )。

这里有一个简单的程序制造了大量的垃圾(garbage),每秒钟创建一个 5,000,000 到 10,000,000 bytes 的数组。程序维持了20个这样的数组,其他的则被丢弃。程序这样设计是为了模拟一种非常常见的情况:随着时间的推移,程序中的不同部分申请了内存,有一些被保留,但大部分不再重复使用。在Go语言网络编程中,用goroutines 来处理网络连接和网络请求时(network connections or requests),通常goroutines都会申请一块内存(比如slice来存储收到的数据)然后就不再使用它们了。随着时间的推移,会有大量的内存被网络连接(network connections)使用,连接累积的垃圾come and gone。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

package main

 

import ( 

    "fmt" 

    "math/rand" 

    "runtime" 

    "time"

 

func makeBuffer() []byte { 

    return make([]byte, rand.Intn(5000000)+5000000) 

}

 

func main() { 

    pool := make([][]byte, 20)

 

    var m runtime.MemStats 

    makes := 0 

    for 

        b := makeBuffer()

        makes += 1

        i := rand.Intn(len(pool))

        pool[i] = b

 

        time.Sleep(time.Second)

 

        bytes := 0

 

        for i := 0; i < len(pool); i++ {

            if pool[i] != nil {

                bytes += len(pool[i])

            }

        }

 

        runtime.ReadMemStats(&m)

        fmt.Printf("%d,%d,%d,%d,%d,%d\n", m.HeapSys, bytes, m.HeapAlloc,

            m.HeapIdle, m.HeapReleased, makes)

    }

}

程序使用 runtime.ReadMemStats函数来获取堆的使用信息。它打印了四个值,

HeapSys:程序向应用程序申请的内存

HeapAlloc:堆上目前分配的内存

HeapIdle:堆上目前没有使用的内存

HeapReleased:回收到操作系统的内存

GC在Golang中运行的很频繁(参见GOGC环境变量(GOGC environment variable )来理解怎样控制垃圾回收操作),因此在运行中由于一些内存被标记为”未使用“,堆上的内存大小会发生变化:这会导致HeapAlloc和HeapIdle发生变化。Golang中的scavenger 会释放那些超过5分钟仍然没有再使用的内存,因此HeapReleased不会经常变化。

下面这张图是上面的程序运行了10分钟以后的情况:

(在这张和后续的图中,左轴以是以byte为单位的内存大小,右轴是程序执行次数)

红线展示了pool中byte buffers的数量。20个 buffers 很快达到150,000,000 bytes。最上方的蓝色线表示程序从操作系统申请的内存。稳定在375,000,000 bytes。因此程序申请了2.5倍它所需的空间!

当GC发生时,HeapIdle和HeapAlloc发生跳变。橘色的线是makeBuffer()发送的次数。

这种过度的内存申请是有GC的程序的通病,参见这篇paper

Quantifying the Performance of Garbage Collection vs. Explicit Memory Management

程序不断执行,idle memory(即HeapIdle)会被重用,但很少归还到操作系统。

 

解决此问题的一个办法是在程序中手动进行内存管理。例如,

程序可以这样重写:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

package main

 

import (

    "fmt"

    "math/rand"

    "runtime"

    "time"

)

 

func makeBuffer() []byte {

    return make([]byte, rand.Intn(5000000)+5000000)

}

 

func main() {

    pool := make([][]byte, 20)

 

    buffer := make(chan []byte, 5)

 

    var m runtime.MemStats

    makes := 0

    for {

        var b []byte

        select {

        case b = <-buffer:

        default:

            makes += 1

            b = makeBuffer()

        }

 

        i := rand.Intn(len(pool))

        if pool[i] != nil {

            select {

            case buffer <- pool[i]:

                pool[i] = nil

            default:

            }

        }

 

        pool[i] = b

 

        time.Sleep(time.Second)

 

        bytes := 0

        for i := 0; i < len(pool); i++ {

            if pool[i] != nil {

                bytes += len(pool[i])

            }

        }

 

        runtime.ReadMemStats(&m)

        fmt.Printf("%d,%d,%d,%d,%d,%d\n", m.HeapSys, bytes, m.HeapAlloc,

            m.HeapIdle, m.HeapReleased, makes)

    }

}

下面这张图是上面的程序运行了10分钟以后的情况:

这张图展示了完全不同的情况。实际使用的buffer几乎等于从操作系统中申请的内存。同时GC几乎没有工作可做。堆上只有很少的HeapIdle最终需要归还到操作系统。

这段程序中内存回收机制的关键操作就是一个缓冲的channel ——buffer,在上面的代码中,buffer是一个可以存储5个[]byte slice的容器。当程序需要空间时,首先会使用select从buffer中读取:

select {

case b = <- buffer:

default :

makes += 1

b = makeBuffer()

}

这永远不会阻塞因为如果channel中有数据,就会被读出,如果channel是空的(意味着接收会阻塞),则会创建一个。

使用类似的非阻塞机制将slice回收到buffer:

select {

case buffer <- pool[i]:

pool[i] = nil

 default:

}

如果buffer 这个channel满了,则以上的写入过程会阻塞,这种情况下default触发。这种简单的机制可以用于安全的创建一个共享池,甚至可通过channel传递实现多个goroutines之间的完美、安全共享。

在我们的实际项目中运用了相似的技术,实际使用中(简单版本)的回收器(recycler )展示在下面,有一个goroutine 处理buffers的构造并在多个goroutine之间共享。get(获取一个新buffer)和give(回收一个buffer到pool)这两个channel被所有goroutines使用。

回收器对收回的buffer保持连接,并定期的丢弃那些过于陈旧可能不会再使用的buffer(在示例代码中这个周期是一分钟)。这让程序可以自动应对爆发性的buffers需求。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

package main

 

import (

    "container/list"

    "fmt"

    "math/rand"

    "runtime"

    "time"

)

 

var makes int

var frees int

 

func makeBuffer() []byte {

    makes += 1

    return make([]byte, rand.Intn(5000000)+5000000)

}

 

type queued struct {

    when time.Time

    slice []byte

}

 

func makeRecycler() (get, give chan []byte) {

    get = make(chan []byte)

    give = make(chan []byte)

 

    go func() {

        q := new(list.List)

        for {

            if q.Len() == 0 {

                q.PushFront(queued{when: time.Now(), slice: makeBuffer()})

            }

 

            e := q.Front()

 

            timeout := time.NewTimer(time.Minute)

            select {

            case b := <-give:

                timeout.Stop()

                q.PushFront(queued{when: time.Now(), slice: b})

 

           case get <- e.Value.(queued).slice:

               timeout.Stop()

               q.Remove(e)

 

           case <-timeout.C:

               e := q.Front()

               for e != nil {

                   n := e.Next()

                   if time.Since(e.Value.(queued).when) > time.Minute {

                       q.Remove(e)

                       e.Value = nil

                   }

                   e = n

               }

           }

       }

 

    }()

 

    return

}

 

func main() {

    pool := make([][]byte, 20)

 

    get, give := makeRecycler()

 

    var m runtime.MemStats

    for {

        b := <-get

        i := rand.Intn(len(pool))

        if pool[i] != nil {

            give <- pool[i]

        }

 

        pool[i] = b

 

        time.Sleep(time.Second)

 

        bytes := 0

        for i := 0; i < len(pool); i++ {

            if pool[i] != nil {

                bytes += len(pool[i])

            }

        }

 

        runtime.ReadMemStats(&m)

        fmt.Printf("%d,%d,%d,%d,%d,%d,%d\n", m.HeapSys, bytes, m.HeapAlloc

             m.HeapIdle, m.HeapReleased, makes, frees)

    }

}

执行程序10分钟,图像会类似于第二幅:

这些技术可以用于程序员知道某些内存可以被重用,而不用借助于GC,可以显著的减少程序的内存使用,同时可以使用在其他数据类型而不仅是[]byte slice,任意类型的Go type(用户定义的或许不行(user-defined or not))都可以用类似的手段回收。

 

转载地址: https://www.cnblogs.com/luckcs/articles/4107647.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值