R语言练习-利用决策树模型分析泰坦尼克生还率(2)

该博客通过R语言的rpart和ctree库,对比分析了两种决策树模型在预测泰坦尼克生还率上的表现。结果显示,尽管两者平均准确度接近(rpart为0.808,ctree为0.812),但ctree的标准差较大,表明其性能波动性更高。
摘要由CSDN通过智能技术生成

R语言练习-利用决策树模型分析泰坦尼克生还率

二、决策树模型

使用rpart模型的原因:
泰坦尼克数据中含有NA值,使用rpart能够处理为代理变量
1、rpart决策树模型
去掉不适合的列,如name

library(rpart)
library(foreach)
folds<-create_ten_fold_cv()
rpart_result<-foreach(f=folds) %do%{
model_rpart<-rpart(
survived~pclass+sex+age+sibsp+parch+fare+embarked,
data=f train)predicted<predict(model

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值