bzoj3732 Network(Kruskal重构树)

32 篇文章 0 订阅
7 篇文章 0 订阅

Description

给你N个点的无向图 (1 <= N <= 15,000),记为:1…N。
图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 < = d_j < = 1,000,000,000).

现在有 K个询问 (1 < = K < = 20,000)。
每个询问的格式是:A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?

Input

第一行: N, M, K。
第2..M+1行: 三个正整数:X, Y, and D (1 <= X <=N; 1 <= Y <= N). 表示X与Y之间有一条长度为D的边。
第M+2..M+K+1行: 每行两个整数A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?

Output

对每个询问,输出最长的边最小值是多少。

Sample Input
6 6 8
1 2 5
2 3 4
3 4 3
1 4 8
2 5 7
4 6 2
1 2
1 3
1 4
2 3
2 4
5 1
6 2
6 1

Sample Output
5
5
5
4
4
7
4
5

HINT
1 <= N <= 15,000
1 <= M <= 30,000
1 <= d_j <= 1,000,000,000
1 <= K <= 15,000

分析:
其实这道题的题意简化一下就是
在一个图中询问任意两点之间的路径
使得路径上的最大边最小

感觉这个题目似曾相识
没错就是货车运输

只要先建立一棵最小生成树
在树上跑lca就可以了

但是今天我们不要用这么low的算法
(没事找事)
我们就引进一种新的数据结构
kruskal重构树:

什么是kruskal重构树呢:
kruskal重构树是个挺好玩的东西
可以拿来处理一些最小生成树的边权最值问题
这里我们Kruskal连边时并不直接连边
而是新建一个节点x
将两个点所在子树都连到x的儿子上

这样生成的树有一些十分优美的性质:

1.二叉树(好吧意义不大)
2.原树与新树两点间路径上边权(点权)的最大值相等
3.子节点的边权小于等于父亲节点(大根堆)
4.原树中两点之间路径上边权的最大值等于新树上两点的LCA的点权

看图理解一下吧
这里写图片描述

看一下性质的体现:
1.不用说了
2.原树上2—>5:2,新树上也是
3.不用说了
4.1—>6:4
确认满足性质

那如果我们建出了kruskal重构树,处理询问只要找一下lca就可以了

那怎么构建kruskal重构树呢:
其实就像构建最小生成树一样
只不过并不直接连边
而是新建一个节点x
将两个点所在子树都连到x的儿子上

有点像并查集哈

tip

1A
这是我自己yy的写法,异常丑陋

这里写代码片
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>

using namespace std;

const int N=30005;
int n,m,k;
struct node{
    int x,y,nxt;
};
node way[N<<2];
struct nd{
    int x,y,v;
};
nd e[N];
int deep[N<<1],fa[N<<1],f[N<<1][20],lg,st[N<<1],tot=0,tt=0,z[N<<1];

int cmp(const nd &a,const nd &b)
{
    return a.v<b.v;
}

int find(int a)  //路径压缩 
{
    if (fa[a]!=a) fa[a]=find(fa[a]);
    return fa[a];
}

void add(int u,int w)
{
    tot++;
    way[tot].x=u;way[tot].y=w;way[tot].nxt=st[u];st[u]=tot;
    tot++;
    way[tot].x=w;way[tot].y=u;way[tot].nxt=st[w];st[w]=tot;
}

void kruskal()
{
    int i,j,o=0;
    tt=n;
    for (i=1;i<=n;i++) fa[i]=i;
    for (i=1;i<=m;i++)
    {
        int f1=find(e[i].x);
        int f2=find(e[i].y);
        if (f1!=f2)
        {
            tt++;
            add(f1,tt);   //连到新点上 
            add(f2,tt);
            fa[tt]=tt;fa[f1]=tt;fa[f2]=tt;
            z[tt]=e[i].v;  //记录点权
            o++; 
        }
        if (o==n-1) break;
    }
    lg=log(tt)/log(2);
}

void dfs(int x,int pa,int dep)
{
    deep[x]=dep;
    f[x][0]=pa;
    for (int i=st[x];i;i=way[i].nxt)
        if (way[i].y!=pa)
            dfs(way[i].y,x,dep+1);
}

void cl()
{
    int i,j;
    for (i=1;i<=lg;i++)
        for (j=1;j<=tt;j++)
            f[j][i]=f[f[j][i-1]][i-1];
}

int lca(int u,int w)
{
    if (deep[u]<deep[w]) swap(u,w);
    int d=deep[u]-deep[w];
    if (d)
        for (int i=0;i<=lg&&d;i++,d>>=1)
            if (d&1)
                u=f[u][i];
    if (u==w) return z[u];
    for (int i=lg;i>=0;i--)
        if (f[u][i]!=f[w][i])
        {
            u=f[u][i];w=f[w][i];
        }
    return z[f[u][0]];
}

int main()
{
    scanf("%d%d%d",&n,&m,&k);
    for (int i=1;i<=m;i++)
        scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].v);
    sort(e+1,e+1+m,cmp);
    kruskal();
    dfs(tt,0,1);
    cl();
    for (int i=1;i<=k;i++)
    {
        int u,w;
        scanf("%d%d",&u,&w);
        printf("%d\n",lca(u,w));
    }
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值