luoguP1758 管道取珠(bzoj1566)(dp+x^2的转化)

119 篇文章 4 订阅

题目描述

管道取珠是小X很喜欢的一款游戏。在本题中,我们将考虑该游戏的一个简单改版。游戏画面如图1所示:

游戏初始时,左侧上下两个管道分别有一定数量的小球(有深色球和浅色球两种类型),而右侧输出管道为空。每一次操作,可以从左侧选择一个管道,并将该管道中最右侧的球推入右边输出管道。

例如:我们首先从下管道中移一个球到输出管道中,将得到图2所示的情况。

假设上管道中有n个球, 下管道中有m个球,则整个游戏过程需要进行n+m次操作,即将所有左侧管道中的球移入输出管道。最终n+m个球在输出管道中从右到左形成输出序列。

爱好数学的小X知道,他共有C(n+m,n)种不同的操作方式,而不同的操作方式可能导致相同的输出序列。举个例子,对于图3所示的游戏情形:

我们用A表示浅色球,B表示深色球。并设移动上管道右侧球的操作为U,移动下管道右侧球的操作为D,则共有C(2+1,1)=3种不同的操作方式,分别为UUD,UDU,DUU;最终在输出管道中形成的输出序列(从右到左)分别为BAB,BBA,BBA。可以发现后两种操作方式将得到同样的输出序列。
假设最终可能产生的不同种类的输出序列共有K种,其中:第i种输出序列的产生方式(即不同的操作方式数目)有ai个。聪明的小X早已知道,
Σai=C(n+m,n)
因此,小X希望计算得到:
Σ(ai)^2
你能帮助他计算这个值么?由于这个值可能很大,因此只需要输出该值对1024523的取模即可(即除以1024523的余数)。
这里写图片描述
说明:文中C(n+m,n)表示组合数。组合数C(a,b)等价于在a个不同的物品中选取b个的选取方案数。

输入输出格式

输入格式:
输入文件中的第一行为两个整数n,m,分别表示上下两个管道中球的数目。
第二行中为一个AB字符串,长度为n,表示上管道中从左到右球的类型。其中:A表示浅色球,B表示深色球。
第三行中为一个AB字符串,长度为m,表示下管道中的情形。

输出格式:
输出文件中仅一行为一个整数,即为 除以1024523的余数。

输入输出样例

输入样例#1:
2 1
AB
B
输出样例#1:
5
说明

【样例说明】
样例即为文中(图3)。共有两种不同的输出序列形式,序列BAB有1种产生方式,而序列BBA有2种产生方式,因此答案为5。

【数据规模和约定】
对于30%的数据,满足:m,n<=12;
对于100%的数据,满足:m,n<=500

分析:
首先,这道题要我们求所有(不同输出序列的方案数)的平方和,
于是我们就想到求所有不同输出序列的方案数,然后我们就GG了
这道题一个巧妙的地方就在于对问题的转化

假设同时有两个人X & Y在玩这个游戏,
设X从up取了i个珠子(不一定连续),从down取了j个珠子,取出来的珠子组成的序列为Q,操作序列为x
Y从up取了k个珠子,从down取了l个珠子,取出来的珠子组成的序列也为Q,操作序列为y
那么我们就得到了一个有序对(x,y),f[i][j][k][l]即表示有序对(x,y)的数量
两个有序对不相同当且仅当x和y不同时相同

下面证明f[i][j][k][l]即为所求

已知:取出珠子的序列为Q,x和y分别为一种取珠方法(可相同), 取出Q的方案数为a;
求证:有序对(x,y)的数量等于a^2。
证:因为取出Q的方案数为a,所以x & y都有a种取值,且x & y彼此独立,故对于x的每一个取值,y都有a种取值,故有序对(x,y)的数量为a^2,命题得证


简单总结一下:

一开始我们的暴力是基于形成的不同序列(每种序列有多少种取法)
然后将问题转化,把每个序列变成不同取法(所有能取出这种序列的方法)之间的组合
而在实际计算的时候,我们并不是从序列出发,把序列算出来之后再计算取法
而是直接枚举取法,看能够形成哪些相等的序列,不同的序列都放到了一个状态下计算
因为我们把所有的计算全都变成了加法而且并不关心具体序列长什么样子,所以无所谓顺序啊,计算方式啊等等

所以我们的状态就是:

f[i][j][k][l]表示从up取了i个珠子(不一定连续),从down取了j个珠子;从up取了k个珠子,从down取了l个珠子,使这两种取法组成的序列相同的操作数
转移方程:
f[i][j][k][l]可以转移到一下四个状态

f[i+1][j][k+1][l]     //p[i+1]==p[k+1]
f[i+1][j][k][l+1]     //p[i+1]==q[l+1]
f[i][j+1][k+1][l]     //q[j+1]==p[k+1]
f[i][j+1][k][l+1]     //q[j+1]==q[l+1]

最后的答案就是:
Σf[i][j][k][l]


这就是这道题最重要的思想,
当然这道题还有其他的技巧:
我们在转移f[i][j][k][l]的时候,没有必要进行四重循环
因为l是可以通过i,j,k计算出来的(i+j=k+l)

在空间上,我们可以考虑用滚动数组优化

tip

我在读入的时候多加了一个&,结果就调了半个小时。。。

这道题可以给我们一个启示

当平方值并不好算的时候,我们选择把平方变成点对个数
这里写图片描述

下面是没有滚动数组优化的代码,只能跑60

//这里写代码片
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long

using namespace std;

const int mod=1024523;
int n,m;
char p[503],q[503];
ll f[503][503][503];

void solve()
{
    int i,j,k,l;
    f[0][0][0]=1;
    for (i=0;i<=n;i++)
        for (j=0;j<=m;j++)
            for (k=0;k<=n;k++)
            if (f[i][j][k])
            {
                l=i+j-k;
                if (p[i+1]==p[k+1]) f[i+1][j][k+1]+=f[i][j][k],f[i+1][j][k+1]%=mod;
                if (p[i+1]==q[l+1]) f[i+1][j][k]+=f[i][j][k],f[i+1][j][k]%=mod;
                if (q[j+1]==p[k+1]) f[i][j+1][k+1]+=f[i][j][k],f[i][j+1][k+1]%=mod;
                if (q[j+1]==q[l+1]) f[i][j+1][k]+=f[i][j][k],f[i][j+1][k]%=mod;
            }
}

int main()
{
    scanf("%d%d",&n,&m);
    scanf("%s",p+1); scanf("%s",q+1);
    solve();
    printf("%lld",f[n][m][n]);
    return 0;
}

看来只能滚动优化了,一开始我以为是优化掉i这一维,但是我发现我们不光会转移到f[i]还会转移到f[i+1]
所以我们只能重新设计状态

设f[c][i][k]表示上下共选择了c个,第一种取法在up中选择了i个,第二种取法在up中选择了k个

这样j和l我们都可以计算出来,转移方程一句最后的答案显而易见

不要忘了数组清零
//这里写代码片
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long

using namespace std;

const int mod=1024523;
int n,m;
char p[503],q[503];
int f[2][503][503];

void solve()
{
    int i,j,k,l,c;
    int now=0;
    f[0][0][0]=1;
    for (c=0;c<n+m;c++)
    {
        now^=1;
        int L=max(c-m,0);            //计算第一个管道取珠的数量范围
        int R=min(c,n);
        for (i=L;i<=R;i++)
            for (k=L;k<=R;k++)
            if (f[now^1][i][k])
            {
                j=c-i;  l=c-k;
                if (p[i+1]==p[k+1]) f[now][i+1][k+1]+=f[now^1][i][k],f[now][i+1][k+1]%=mod;
                if (p[i+1]==q[l+1]) f[now][i+1][k]+=f[now^1][i][k],f[now][i+1][k]%=mod;
                if (q[j+1]==p[k+1]) f[now][i][k+1]+=f[now^1][i][k],f[now][i][k+1]%=mod;
                if (q[j+1]==q[l+1]) f[now][i][k]+=f[now^1][i][k],f[now][i][k]%=mod;

                f[now^1][i][k]=0;
            }
    }
    printf("%d",f[now][n][n]);
}

int main()
{
    scanf("%d%d",&n,&m);
    scanf("%s",p+1); scanf("%s",q+1);
    solve();
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值