bzoj1061 [Noi2008]志愿者招募(费用流)

44 篇文章 0 订阅
16 篇文章 0 订阅

Description

申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。

Input

第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了方便起见,我们可以认为每类志愿者的数量都是无限多的。

Output

仅包含一个整数,表示你所设计的最优方案的总费用。

Sample Input

3 3
2 3 4
1 2 2
2 3 5
3 3 2

Sample Output

14

HINT

1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1。

[ Submit][ Status][ Discuss]



分析: 第一眼就看出是一道费用流 那别废话了,建图吧。。。鼓捣了半天,没搞出来。。。 问题就出在志愿者的服务时间是一个区间$L_i$,如果我们雇佣了他们,会在这一段时间内都产生影响 这和普通的网络流是有点区别的

学姐推荐了一个大神链

这道题的模型隐藏得较深,不易想到
下面我们就由浅入深,通过一个例子来说明:

N=4,四天需要的人数分别是4,2,5,3,有五类志愿者,如下表所示:

种类12345
时间1~ 21 ~ 12~ 33~ 33~4
费用34356

设雇佣第i类的志愿者人数为 X i X_i Xi,每个志愿者的费用是 V i V_i Vi,第j天雇佣的人数为 P i P_i Pi ,那么每一天雇佣的人数满足一个不等式:

P 1 = X 1 + X 2 > = 4 P_1=X_1+X_2>=4 P1=X1+X2>=4
P 2 = X 1 + X 3 > = 2 P_2=X_1+X_3>=2 P2=X1+X3>=2
P 3 = X 3 + X 4 + X 5 > = 5 P_3=X_3+X_4+X_5>=5 P3=X3+X4+X5>=5
P 4 = X 5 > = 3 P_4=X_5>=3 P4=X5>=3

然而这些不等式我们没法解啊
于是我们对于每一个个不等式,添加一个辅助变量 Y i Y_i Yi Y i > = 0 Y_i>=0 Yi>=0),可以使其变成等式:

P 1 = X 1 + X 2 − Y 1 = 4 P_1=X_1+X_2-Y_1=4 P1=X1+X2Y1=4
P 2 = X 1 + X 3 − Y 2 = 2 P_2=X_1+X_3-Y_2=2 P2=X1+X3Y2=2
P 3 = X 3 + X 4 + X 5 − Y 3 = 5 P_3=X_3+X_4+X_5-Y_3=5 P3=X3+X4+X5Y3=5
P 4 = X 5 − Y 4 = 3 P_4=X_5-Y_4=3 P4=X5Y4=3

在上述四个等式上下添加 P 0 = 0 , P 5 = 0 P_0=0,P_5=0 P0=0,P5=0,每次用下边的式子减去上边的式子,得:

P 0 = 0 P_0=0 P0=0
P 1 = X 1 + X 2 − Y 1 = 4 P_1=X_1+X_2-Y_1=4 P1=X1+X2Y1=4
P 2 = X 1 + X 3 − Y 2 = 2 P_2=X_1+X_3-Y_2=2 P2=X1+X3Y2=2
P 3 = X 3 + X 4 + X 5 − Y 3 = 5 P_3=X_3+X_4+X_5-Y_3=5 P3=X3+X4+X5Y3=5
P 4 = X 5 − Y 4 = 3 P_4=X_5-Y_4=3 P4=X5Y4=3
P 5 = 0 P_5=0 P5=0

P 1 − P 0 = X 1 + X 2 − Y 1 = 4 P_1-P_0=X_1+X_2-Y_1=4 P1P0=X1+X2Y1=4
P 2 − P 1 = X 3 − X 2 − Y 2 + Y 1 = − 2 P_2-P_1=X_3-X_2-Y_2+Y_1=-2 P2P1=X3X2Y2+Y1=2
P 3 − P 2 = X 4 + X 5 − X 1 − Y 3 + Y 2 = 3 P_3-P_2=X_4+X_5-X_1-Y_3+Y_2=3 P3P2=X4+X5X1Y3+Y2=3
P 4 − P 3 = − X 3 − X 4 + Y 3 − Y 4 = − 2 P_4-P_3=-X_3-X_4+Y_3-Y_4=-2 P4P3=X3X4+Y3Y4=2
P 5 − P 4 = − X 5 + Y 4 = − 3 P_5-P_4=-X_5+Y_4=-3 P5P4=X5+Y4=3

我们可以发现,每个变量都在两个式子中出现了,而且一次为正,一次为负
所有等式和为0
接下来根据上面五个等式构图

  • 每个等式为图中一个顶点,添加源点 S S S和汇点 T T T
  • 如果一个等式右边为非负整数 c c c,从源点 S S S向该等式对应的顶点连一条容量为 c c c,权值为 0 0 0的有向边
    如果一个等式右边为负整数 c c c,从给等式对应的顶点向汇点连一条容量为 c c c,权值为 0 0 0的有向边
  • 如果一个变量 X i X_i Xi在第 j j j 个等式中出现,在第 k k k个等式中出现为 − X i -X_i Xi,从顶点 j j j向顶点 k k k连一条容量为 ∞ ∞ ,权值为 V i V_i Vi的有向边
  • 如果一个变量 Y i Y_i Yi在第 j j j 个等式中出现,在第 k k k个等式中出现为 − Y i -Y_i Yi,从顶点 j j j向顶点 k k k连一条容量为 ∞ ∞ ,权值为 0 0 0的有向边

求从源点 S S S到汇点 T T T的最小费用最大流,费用值就是结果
这里写图片描述

上面的方式很神奇的求出了结果,我们解释一下为什么这样构图
我们将最后五个等式进一步变形,得:

− X 1 − X 2 + Y 1 + 4 = 0 -X_1-X_2+Y_1+4=0 X1X2+Y1+4=0
− X 3 + X 2 + Y 2 − Y 1 − 2 = 0 -X_3+X_2+Y_2-Y_1-2=0 X3+X2+Y2Y12=0
− X 4 − X 5 + X 1 + Y 3 − Y 2 + 3 = 0 -X_4-X_5+X_1+Y_3-Y_2+3=0 X4X5+X1+Y3Y2+3=0
X 3 + X 4 − Y 3 + Y 4 − 2 = 0 X_3+X_4-Y_3+Y_4-2=0 X3+X4Y3+Y42=0
X 5 − Y 4 − 3 = 0 X_5-Y_4-3=0 X5Y43=0

可以发现,每个等式左边都是几个变量和一个常数相加减,右边都为0,恰好就像网络流中除了源点和汇点的顶点都满足流量平衡
每个正的变量相当于流入该顶点的流量,负的变量相当于流出该顶点的流量,而正常数可以看作来自附加源点的流量,负常数是流向附加汇点的流量
因此可以据此构造网络,求出从附加源到附加汇的网络最大流,即可满足所有等式
而我们还要求 Σ ( V i ∗ X i ) Σ(V_i*X_i) Σ(ViXi)最小,所以要在X变量相对应的边上加上权值,然后求最小费用最大流


在建图的时候,我们能发现规律:
等式右边的值就是相邻两天的A值之差
X i X_i Xi的正值出现在 s t a r t i start_i starti,负出现在 e n d i + 1 end_i+1 endi+1
Y i Y_i Yi的正值出现在 i + 1 i+1 i+1,负值出现在 i i i

#tip
不能不说,这道题xue微有点难很难,
难就难在数学模型的抽象,而这就是信息学的精髓所在

#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>

using namespace std;

const int INF=0x33333333;
const int N=10005;
int n,m,A[N],C[N],st[N],tot=-1;
struct node{
	int x,y,v,c,nxt;
};
node way[N*100];
int dis[N],s,t,pre[N];
bool in[N];

void add(int u,int w,int z,int cc)
{
	tot++;
	way[tot].x=u;way[tot].y=w;way[tot].v=z;way[tot].c=cc;way[tot].nxt=st[u];st[u]=tot;
	tot++;
	way[tot].x=w;way[tot].y=u;way[tot].v=0;way[tot].c=-cc;way[tot].nxt=st[w];st[w]=tot;
}

int spfa(int s,int t)
{
	queue<int> Q;
	memset(dis,0x33,sizeof(dis));
	memset(in,0,sizeof(in));
	Q.push(s); dis[s]=0; in[s]=1;
	while (!Q.empty())
	{
		int now=Q.front(); Q.pop();
		in[now]=0;
		for (int i=st[now];i!=-1;i=way[i].nxt)
		    if (way[i].v&&dis[way[i].y]>dis[now]+way[i].c)
		    {
		    	dis[way[i].y]=dis[now]+way[i].c;
		    	pre[way[i].y]=i;
		    	if (!in[way[i].y])
		    	{
		    		in[way[i].y]=1;
		    		Q.push(way[i].y);
				}
			}
	}
	return dis[t]<INF;
}

int doit()
{
	int ans=0;
	while (spfa(s,t))
	{
		int sum=INF;
		for (int i=t;i!=s;i=way[pre[i]].x)
		    sum=min(sum,way[pre[i]].v);
		ans+=sum*dis[t];
		for (int i=t;i!=s;i=way[pre[i]].x)
		    way[pre[i]].v-=sum,
		    way[pre[i]^1].v+=sum;
	}
	return ans;
}

int main()
{
	memset(st,-1,sizeof(st));
	scanf("%d%d",&n,&m);
	s=0; t=n+2;
	for (int i=1;i<=n;i++) 
	{
		scanf("%d",&A[i]);
		if (A[i]-A[i-1]>0) add(s,i,A[i]-A[i-1],0);
		else add(i,t,A[i-1]-A[i],0);
		add(i+1,i,INF,0);
	}
	add(n+1,t,A[n],0);
	
	for (int i=1;i<=m;i++)
	{
		int x,y,z;
		scanf("%d%d%d",&x,&y,&z);
		add(x,y+1,INF,z);
	} 
	
	printf("%d\n",doit());
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值