bzoj2653 middle(主席树+二分)

题目链接

分析:
可以发现所有满足条件的中位数是具有单调性的
也就是说,如果 M'<M M ′ < M ,且 M M 为合法的中位数,那么M也为合法的中位数
那么我们就可以考虑二分答案

根据题目中对中位数的定义:
如果序列长度为奇数,中位数即为最中间的那个数,
如果序列长度为偶数,那么中位数为中间的两个数更靠后的那个数

假设我们已经二分出答案mid,现在要判定M是否为合法的中位数
只需要将 M ≥ M 的数的权定为 1 1 ,将<M的数的权定为 1 − 1
如果一个区间的最大连续子序列和≥0
就说明 M M 是合法的中位数,即一定存在一种方案,使这个区间的某一个子序列的中位数是M

怎样维护区间最大连续子序列和呢?
立马想到类似线段树之类的数据结构
结点内只需要维护:
sum s u m :区间和
ls l s :从左端开始的最大连续子序列和
rs r s :从右端开始的最大连续子序列和
分别表示,从左端起最大连续子序列和
那么满足条件 [a,b][c,d] [ a , b ] − [ c , d ] 的最长连续子序列和即为 sum(b,c)+ls(a,b)+rs(c,d) s u m ( b , c ) + l s ( a , b ) + r s ( c , d )

可是如果每一次二分都重构线段树的话时间是无法承受的
但是想到从1到−1的变化实际上是通过M的移动产生的
考虑建立可持久化线段树

其中维护的是每个结点作为中位数时的线段树信息

首先第一棵线段树所有的结点的权都为1
第二棵线段树就是在第一棵的基础上,将排名为第一的点的位置的权修改为−1
这就相当于是当M为第二个点的时候的线段树了

询问的时候直接在M代表的线段树上区间查询即可

最坏情况下时间复杂度 O(nlog3n) O ( n l o g 3 n )

tip

很好的一道题,主席树的使用方法又拓宽了
清楚了思路后,马上就写完了
没有debug,直接过样例,交上去一A撒花

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long

using namespace std;

const int N=20005;
int n,m,root[N],q[4],top=0,lastans=0;
struct point{
    int x,id;
    bool operator <(const point &a) const
    {
        return x<a.x;
    }
};
point A[N];
struct node{
    int ls,rs,sum,l,r;
};
node t[N*20];

void build(int &now,int l,int r)
{
    top++;
    t[top]=t[now];
    now=top;
    t[now].sum=t[now].ls=t[now].rs=r-l+1;
    if (l==r) return;
    int mid=(l+r)>>1;
    build(t[now].l,l,mid);
    build(t[now].r,mid+1,r);
}

node update(int lc,int rc)
{
    node ans;
    ans.l=lc; ans.r=rc;
    ans.sum=t[lc].sum+t[rc].sum;
    ans.ls=max(t[lc].ls,t[lc].sum+t[rc].ls);
    ans.rs=max(t[rc].rs,t[rc].sum+t[lc].rs);
    return ans;
}

node update_2(node lc,node rc)
{
    node ans;
    ans.sum=lc.sum+rc.sum;
    ans.ls=max(lc.ls,lc.sum+rc.ls);
    ans.rs=max(rc.rs,rc.sum+lc.rs);
    return ans;
}

void insert(int &now,int l,int r,int x)    //位置x -1 
{
    top++;
    t[top]=t[now];
    now=top;
    if (l==r) 
    {
        t[now].sum=-1; t[now].ls=t[now].rs=0;
        return;
    }
    int mid=(l+r)>>1;
    if (x<=mid) insert(t[now].l,l,mid,x);
    else insert(t[now].r,mid+1,r,x);
    t[now]=update(t[now].l,t[now].r);
}

node ask(int x,int l,int r,int L,int R)
{
    if (l>=L&&r<=R)
        return t[x];
    int mid=(l+r)>>1;
    if (R<=mid) return ask(t[x].l,l,mid,L,R);
    else if (L>mid) return ask(t[x].r,mid+1,r,L,R);
    else return update_2(ask(t[x].l,l,mid,L,R),ask(t[x].r,mid+1,r,L,R));
}

void solve(int a,int b,int c,int d)
{
    int ans=0;
    int l=1,r=n;
    while (l<=r)
    {
        int mid=(l+r)>>1;
        int m1=ask(root[mid],1,n,b,c).sum;
        int m2=ask(root[mid],1,n,a,b-1).rs;
        int m3=ask(root[mid],1,n,c+1,d).ls;
        if (m1+m2+m3>=0) ans=mid,l=mid+1;
        else r=mid-1;
    }
    printf("%d\n",A[ans].x);
    lastans=A[ans].x;
}

int main()
{
    scanf("%d",&n);
    for (int i=1;i<=n;i++) scanf("%d",&A[i].x),A[i].id=i;

    sort(A+1,A+1+n);
    build(root[1],1,n);
    for (int i=2;i<=n;i++){
        root[i]=root[i-1];         //以第i大作为中位数 
        insert(root[i],1,n,A[i-1].id);
    }

    lastans=0;
    scanf("%d",&m);
    int a,b,c,d;
    for (int i=1;i<=m;i++)
    {
        scanf("%d%d%d%d",&a,&b,&c,&d);
        q[1]=(a+lastans)%n; q[2]=(b+lastans)%n; q[3]=(c+lastans)%n; q[4]=(d+lastans)%n;
        sort(q+1,q+5);
        a=q[1]+1; b=q[2]+1; c=q[3]+1; d=q[4]+1;

        solve(a,b,c,d);
    }

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值