Description
采药人的药田是一个树状结构,每条路径上都种植着同种药材。
采药人以自己对药材独到的见解,对每种药材进行了分类。大致分为两类,一种是阴性的,一种是阳性的。
采药人每天都要进行采药活动。他选择的路径是很有讲究的,他认为阴阳平衡是很重要的,所以他走的一定是两种药材数目相等的路径。采药工作是很辛苦的,所以他希望他选出的路径中有一个可以作为休息站的节点(不包括起点和终点),满足起点到休息站和休息站到终点的路径也是阴阳平衡的。他想知道他一共可以选择多少种不同的路径。
Input
第1行包含一个整数N。
接下来N-1行,每行包含三个整数a_i、b_i和t_i,表示这条路上药材的类型。
Output
输出符合采药人要求的路径数目。
Sample Input
1 2 0
3 1 1
2 4 0
5 2 0
6 3 1
5 7 1
Sample Output
HINT
对于100%的数据,N ≤ 100,000。
Source
分析:
把阳性药的价值设为1,阴性药的价值为-1
如果没有所谓休息站的限制
我们只要计算路径和为0的路径条数即可(比较简单)
而现在我们需要在路径上找到一个休息站,怎么破?
我们求出每个结点到根节点的路径和
sum
s
u
m
,如果这条路径上有两个结点的
sum
s
u
m
相等
就说明有一段的路径和为0,即这个路径上可以设置一个休息站
f[i][0/1]
f
[
i
]
[
0
/
1
]
表示当前子树中,子结点到根结点的路径长度为
i
i
,其中是否可以设置休息站
表示在已经处理过的子树中,子结点到根结点的路径长度为
i
i
,,其中是否可以设置休息站
(这样设置就可以不用去重了)
这个表述可能有点难理解(但是绝对正确):
具体的计算方法:
如果在dfs一条路径时,
到达结点之前有一个结点的
sum
s
u
m
值等于
sum[now]
s
u
m
[
n
o
w
]
那么
now
n
o
w
就可以作为路径的一个端点,
f[sum[now]][1]++
f
[
s
u
m
[
n
o
w
]
]
[
1
]
+
+
ans=f[0][0]∗g[0][0]+∑deepi=−deep(f[i][0]∗g[−i][1]+f[i][1]∗g[−i][0]+f[i][1]∗g[−i][1]) a n s = f [ 0 ] [ 0 ] ∗ g [ 0 ] [ 0 ] + ∑ i = − d e e p d e e p ( f [ i ] [ 0 ] ∗ g [ − i ] [ 1 ] + f [ i ] [ 1 ] ∗ g [ − i ] [ 0 ] + f [ i ] [ 1 ] ∗ g [ − i ] [ 1 ] )
Refun学弟问了我一个非常高深的问题:
为什么在solve中,一开始:g[o][0]=1;
但是在统计答案的时候:ans+=(g[o][0]-1)*f[o][0];
这个g[o][0]=1;
看似没有一点作用啊
实际上,这个初始化非常的重要
看代码中的转移方程:
ans=ans+f[j+o][1]*g[-j+o][0]+f[j+o][0]*g[-j+o][1]+f[j+o][1]*g[-j+o][1];
我们观察到第一项f[j+o][1]*g[-j+o]
,当
j=0
j
=
0
的时候会用到
g[o][0]
g
[
o
]
[
0
]
f[j+o][1]
f
[
j
+
o
]
[
1
]
记录的是从根结点出发至少一步,子结点到根结点的路径长度为
i
i
,其中可以设置休息站的路径条数
那我们看一下当时,f数组是个什么情况
显然这是一种合法情况(点2上设一个休息站即可)
用不到再找一条链拼成完整的一条路径,这样的路径也是经过当前根结点的合法路径
所以我们要把这一部分也累加上,因此
g[o][0]=1
g
[
o
]
[
0
]
=
1
(防止f[j+o][1]*g[-j+o]
乘成0)
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=100010;
int o,n,sz,root,F[N],size[N],st[N],tot=0;
ll f[N<<1][2],g[N<<1][2],ans=0;
int sum[N],deep[N];
struct node{
int y,nxt,v;
};
node way[N<<1];
bool vis[N];
void add(int u,int w,int z) {
tot++;way[tot].y=w;way[tot].v=z;way[tot].nxt=st[u];st[u]=tot;
tot++;way[tot].y=u;way[tot].v=z;way[tot].nxt=st[w];st[w]=tot;
}
void findroot(int now,int fa) {
size[now]=1;
F[now]=0;
for (int i=st[now];i;i=way[i].nxt)
if (way[i].y!=fa&&!vis[way[i].y]) {
findroot(way[i].y,now);
size[now]+=size[way[i].y];
F[now]=max(F[now],size[way[i].y]);
}
F[now]=max(F[now],sz-size[now]);
if (F[now]<F[root]) root=now;
}
int mxdeep;
int cnt[N<<1];
void dfs(int now,int fa) {
mxdeep=max(mxdeep,deep[now]);
if (cnt[sum[now]+o]) f[sum[now]+o][1]++;
else f[sum[now]+o][0]++;
cnt[sum[now]+o]++;
for (int i=st[now];i;i=way[i].nxt)
if (way[i].y!=fa&&!vis[way[i].y]) {
sum[way[i].y]=sum[now]+way[i].v;
deep[way[i].y]=deep[now]+1;
dfs(way[i].y,now);
}
cnt[sum[now]+o]--;
}
void solve(int now,int fa) {
vis[now]=1;
g[o][0]=1;
int mx=0;
for (int i=st[now];i;i=way[i].nxt)
if (!vis[way[i].y]) {
mxdeep=1;
deep[way[i].y]=1;
sum[way[i].y]=way[i].v;
dfs(way[i].y,now);
mx=max(mx,mxdeep); //子树中的最大深度
ans+=(g[o][0]-1)*f[o][0];
for (int j=-mxdeep;j<=mxdeep;j++)
ans=ans+f[j+o][1]*g[-j+o][0]+f[j+o][0]*g[-j+o][1]+f[j+o][1]*g[-j+o][1];
for (int j=-mxdeep;j<=mxdeep;j++){
g[j+o][0]+=f[j+o][0];
g[j+o][1]+=f[j+o][1];
f[j+o][0]=f[j+o][1]=0; //清零
}
}
for (int i=-mx;i<=mx;i++)
g[i+o][0]=g[i+o][1]=0;
for (int i=st[now];i;i=way[i].nxt)
if (!vis[way[i].y]) {
sz=size[way[i].y]; root=0;
findroot(way[i].y,0);
solve(root,0);
}
}
int main()
{
scanf("%d",&n);
for (int i=1;i<n;i++) {
int u,w,z;
scanf("%d%d%d",&u,&w,&z);
add(u,w,(z==1)? 1:-1);
}
sz=n; o=n;
F[0]=N; root=0;
findroot(1,0);
solve(root,0);
printf("%lld",ans);
return 0;
}