bzoj3270 博物馆(概率+gauss)

题目链接

分析:
感觉这道题和聪聪可可有点像

实际上我们还是设置状态: f(x,y) f ( x , y )
表示Petya在 x x ,Vasya在y的概率(准确人名良心)
设每个结点的度为 deg[i] d e g [ i ]
从i到达与ta相邻的任意节点的概率 out[i] o u t [ i ] 就是 1p[i]deg[i] 1 − p [ i ] d e g [ i ]

我们枚举 x,y x , y 前驱结点 x>u,y>v x − > u , y − > v ,则:
f(x,y)=f(u,v)out[x]out[y]+f(u,y)out[x]Py+f(x,v)out[y]Px+f(x,y)PxPy f ( x , y ) = ∑ f ( u , v ) ∗ o u t [ x ] ∗ o u t [ y ] + f ( u , y ) ∗ o u t [ x ] ∗ P y + f ( x , v ) ∗ o u t [ y ] ∗ P x + f ( x , y ) ∗ P x ∗ P y

化一下式子(移项):
0=f(u,v)out[x]out[y]+f(u,y)out[x]Py+f(x,v)out[y]Px+f(x,y)PxPyf(x,y) 0 = f ( u , v ) ∗ o u t [ x ] ∗ o u t [ y ] + f ( u , y ) ∗ o u t [ x ] ∗ P y + f ( x , v ) ∗ o u t [ y ] ∗ P x + f ( x , y ) ∗ P x ∗ P y − f ( x , y )

其中 f(a,b) f ( a , b ) 是未知数,上式就可以看成是一个方程
(一开始我以为是单纯型,但是线性规划需要的是不等式)

我们可以得到 n2 n 2 个方程
直接高斯消元即可

需要特别注意的是 f(s,t) f ( s , t ) 刚开始的概率是1,后来又会有再次经过的概率
但是我们列式子的时候要把左边的常数项赋值成-1

我们在枚举前驱结点的时候,方便起见,每个点添加一条能到达ta自己的边
这样就可以统一处理前进和停留的情况了
(然而这条边不能算在结点的度之中

tip

列方程的时候还是要想清楚了,系数不要加重了

总结一下这道题的易错点:
  • 加自环,便于统一处理前进和停留的情况
  • f(s,t) f ( s , t ) 概率是1, a[f(s,t)][f(s,t)]=1 a [ f ( s , t ) ] [ f ( s , t ) ] = − 1
  • 方程的系数是增加+,不是赋值;注意判断前驱状态(到达不同状态概率不一样)
  • 因为gauss和get中都要用到n,所以不要随便改变n的价值
  • 最后答案是fabs
  • 方程中枚举的是前驱结点(从哪里来)

感觉自己的gauss写的一直很随意,所以从现在开始,把板子固定下来:

void gauss(int n) {
    int now=1,to;
    double t;
    for (int i=1;i<=n;i++) {        //未知量 
        for (to=now;to<=n;to++)
            if (fabs(a[to][i])>eps) break;
        if (to>n) continue;
        if (to!=now) 
            for (int j=1;j<=n+1;j++)
                swap(a[to][j],a[now][j]);
        for (int j=1;j<=n;j++) 
            if (j!=now) {
                t=a[j][i]/a[now][i];
                for (int k=1;k<=n+1;k++)
                    a[j][k]-=t*a[now][k];
            }
        now++;
    }
    for (int i=1;i<=n;i++) a[i][n+1]/=a[i][i];
}

我一开始把系数化为一这一步放在了里面,一直跑不出答案
最后只能把这一步单独拉出来才行
猛然想起蓝书上说过这样的gauss精度损失较大
于是就想开LD,但是不知道为什么精度反而更低了。。。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>

using namespace std;

const double eps=1e-10;
const int N=21;
int n,m,s,t,G[N][N],tot,du[N];
double p[N],out[N],a[402][402];

int get(int x,int y) {
    return (x-1)*n+y;
}

void gauss(int n) {
    int now=1,to;
    double t;
    for (int i=1;i<=n;i++) {        //未知量 
        for (to=now;to<=n;to++)
            if (fabs(a[to][i])>eps) break;
        if (to>n) continue;
        if (to!=now) 
            for (int j=1;j<=n+1;j++)
                swap(a[to][j],a[now][j]);
        for (int j=1;j<=n;j++) 
            if (j!=now) {
                t=a[j][i]/a[now][i];
                for (int k=1;k<=n+1;k++)
                    a[j][k]-=t*a[now][k];
            }
        now++;
    }
    for (int i=1;i<=n;i++) a[i][n+1]/=a[i][i];
}

int main()
{
    scanf("%d%d%d%d",&n,&m,&s,&t);
    tot=n*n;
    for (int i=1;i<=m;i++) {
        int x,y;
        scanf("%d%d",&x,&y);
        G[x][++G[x][0]]=y; G[y][++G[y][0]]=x;
    }
    for (int i=1;i<=n;i++) {
        scanf("%lf",&p[i]);
        out[i]=(1.0-p[i])/(double)G[i][0];
        G[i][++G[i][0]]=i;                          //自环 
    }

    a[get(s,t)][tot+1]=-1;                          //概率为1 
    for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++) {
            a[get(i,j)][get(i,j)]--;                
            for (int s=1;s<=G[i][0];s++)            //枚举前驱结点 
                for (int l=1;l<=G[j][0];l++) {
                    int u=G[i][s];
                    int v=G[j][l];
                    if (u==v) continue;
                    if (u!=i&&v!=j) a[get(i,j)][get(u,v)]+=out[u]*out[v];
                    if (u!=i&&v==j) a[get(i,j)][get(u,v)]+=out[u]*p[v];
                    if (u==i&&v!=j) a[get(i,j)][get(u,v)]+=p[u]*out[v];
                    if (u==i&&v==j) a[get(i,j)][get(u,v)]+=p[u]*p[v];
                } 
        }

    gauss(tot);
    for (int i=1;i<=n;i++) 
        printf("%0.6lf ",fabs(a[get(i,i)][tot+1]));
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值