bzoj2788 [Poi2012]Festival(差分约束)

Description

有n个正整数X1,X2,…,Xn,再给出m1+m2个限制条件,限制分为两类:

1. 给出a,b (1<=a,b<=n),要求满足Xa + 1 = Xb

2. 给出c,d (1<=c,d<=n),要求满足Xc <= Xd

在满足所有限制的条件下,求集合{Xi}大小的最大值。

Input


第一行三个正整数n, m1, m2 (2<=n<=600, 1<=m1+m2<=100,000)。

接下来m1行每行两个正整数a,b (1<=a,b<=n),表示第一类限制。

接下来m2行每行两个正整数c,d (1<=c,d<=n),表示第二类限制。

Output

一个正整数,表示集合{Xi}大小的最大值。

如果无解输出NIE。

Sample Input

4 2 2
1 2
3 4
1 4
3 1

Sample Output

3

HINT

X3=1, X1=X4=2, X2=3

这样答案为3。容易发现没有更大的方案。



[ Submit][ Status][ Discuss]



分析:
看到这两条限制
  1. 给出a,b (1<=a,b<=n),要求满足Xa + 1 = Xb
  2. 给出c,d (1<=c,d<=n),要求满足Xc <= Xd

反应出差分约束的模型
Xa+1=Xb: X a + 1 = X b :
Xa(1)>Xb,Xb(1)>Xa X a − ( 1 ) − > X b , X b − ( − 1 ) − > X a

Xc<=Xd: X c <= X d :
Xd(0)>Xc X d − ( 0 ) − > X c

写完了朴素的差分约束,我发现了一个问题:
我们之所以把差分约束问题转化成最短路,是为了使每个数的取值在符合条件下尽量小
但是题目要求:在满足所有限制的条件下,求集合{Xi}大小的最大值(也就是说要使出现的数值尽量多)
这个不是一遍spfa可以解决的


怎么破?

我们先用tarjan缩点,得到一个DAG
显然DAG的点之间边都是单向的,一定是第二种限制条件的边
那么我们就能保证存在一组解使 SCC1,SCC2 S C C 1 , S C C 2 的点权值不重复,最终的答案就是每个强连通分量的答案之和

那么现在我们只需要计算强连通量内的答案啦
因为边权的绝对值都是1,且权值非负
所以不同数值的数量就是:环内最大距离+1

因为是环内最大距离,所以我们要求的是最大路,建图也要变一变
Xa+1=Xb: X a + 1 = X b :
Xa(1)>Xb,Xb(1)>Xa X a − ( 1 ) − > X b , X b − ( − 1 ) − > X a

Xc<=Xd: X c <= X d :
Xc(0)>Xd X c − ( 0 ) − > X d

由于数据范围较小,用floyed计算最长路即可

tip

注意可能会有重边,所以 dis[x][y] d i s [ x ] [ y ] 要取max

#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#include<algorithm>

using namespace std;

const int INF=0x33333333;
const int N=605;
int n,m1,m2,st[N],tot=0,dis[N][N],ans;
int dfn[N],low[N],clo=0,cnt=0,belong[N],s[N],top=0;
bool vis[N];
struct node{
    int y,nxt;
};
node way[200010];

void add(int u,int w) {
    tot++;way[tot].y=w;way[tot].nxt=st[u];st[u]=tot;
}

void tarjan(int now) {
    dfn[now]=low[now]=++clo;
    s[++top]=now;
    vis[now]=1;
    for (int i=st[now];i;i=way[i].nxt)
        if (!dfn[way[i].y]) {
            tarjan(way[i].y);
            low[now]=min(low[now],low[way[i].y]);
        }
        else if (vis[way[i].y])
            low[now]=min(low[now],dfn[way[i].y]);
    if (dfn[now]==low[now]) {
        cnt++;
        int x=-1;
        while (x!=now) {
            x=s[top--];
            belong[x]=cnt;
            vis[x]=0;
        }
    }
}

int main()
{
    scanf("%d%d%d",&n,&m1,&m2);
    for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++) 
            if (i!=j) dis[i][j]=-INF;
            else dis[i][j]=0;
    for (int i=1;i<=m1;i++) {
        int x,y;
        scanf("%d%d",&x,&y);
        add(x,y); add(y,x);
        dis[x][y]=max(dis[x][y],1); 
        dis[y][x]=max(dis[y][x],-1);
    }
    for (int i=1;i<=m2;i++) {
        int x,y;
        scanf("%d%d",&x,&y);
        add(x,y);
        dis[x][y]=max(dis[x][y],0);
    }

    for (int i=1;i<=n;i++) 
        if (!dfn[i])
            top=0,tarjan(i);       //tarjan缩点 

    for (int o=1;o<=cnt;o++) {
        for (int k=1;k<=n;k++) if (belong[k]==o)
            for (int i=1;i<=n;i++) if (belong[i]==o&&dis[i][k]!=-INF)
                for (int j=1;j<=n;j++) if (belong[j]==o&&dis[k][j]!=-INF)
                    dis[i][j]=max(dis[i][j],dis[i][k]+dis[k][j]);
        int now=0;
        for (int i=1;i<=n;i++) if (belong[i]==o)
            for (int j=1;j<=n;j++) if (belong[j]==o)
                now=max(now,abs(dis[i][j]));
        ans+=now+1;
    }
    for (int i=1;i<=n;i++)
        if (dis[i][i]!=0)     //存在环
        {
            printf("NIE\n"); 
            return 0;
        }
    printf("%d\n",ans);

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值