cv2303 [Sdoi2008 ] Sandy的卡片(后缀数组+二分)

Description

Sandy和Sue的热衷于收集干脆面中的卡片。然而,Sue收集卡片是因为卡片上漂亮的人物形象,而Sandy则是为了积攒卡片兑换超炫的人物模型。每一张卡片都由一些数字进行标记,第i张卡片的序列长度为Mi,要想兑换人物模型,首先必须要集够N张卡片,对于这N张卡片,如果他们都有一个相同的子串长度为k,则可以兑换一个等级为k的人物模型。相同的定义为:两个子串长度相同且一个串的全部元素加上一个数就会变成另一个串。Sandy的卡片数远远小于要求的N,于是Sue决定在Sandy的生日将自己的卡片送给Sandy,在Sue的帮助下,Sandy终于集够了N张卡片,但是,Sandy并不清楚他可以兑换到哪个等级的人物模型,现在,请你帮助Sandy和Sue,看看他们最高能够得到哪个等级的人物模型。

Input

第一行为一个数N,表示可以兑换人物模型最少需要的卡片数,即Sandy现在有的卡片数
第i+1行到第i+N行每行第一个数为第i张卡片序列的长度Mi,之后j+1到j+1+Mi个数,用空格分隔,分别表示序列中
的第j个数
n<=1000,M<=1000,2<=Mi<=101

Output

一个数k,表示可以获得的最高等级。

Sample Input

2
2 1 2
3 4 5 9

Sample Output

2



分析:
求最长公共子串
后缀自动机?mmp太麻烦了,不想写
KMP进行n次比较?理论上可以
后缀数组?嗯,就ta了

我们把n个串连起来,中间加上一个无用字符
因为我们只关心数字之间的差值,所以做个查分就好了
得到sa和height数组
一开始我们想法比较简单:扫一遍height求min
显然不对

我们二分一个答案mid,每次根据这个答案把height数组分成若干块
每一块中的最长公共前缀不小于mid
判断这一块内是否出现了属于n个不同字符串的子串即可

tip

二分判定写的太丑

#include<cstdio>
#include<cstring>
#include<iostream>

using namespace std;

const int N=1000010;
const int base=2000;
int sa[N],wx[N],wy[N],cc[N],rak[N],hei[N];
int n,m,s[N],len,belong[N],L=0,R=0;

int cmp(int *y,int a,int b,int k) {
    int ra1=y[a];
    int rb1=y[b];
    int ra2=a+k>=len? -1:y[a+k];
    int rb2=b+k>=len? -1:y[b+k];
    return ra1==rb1&&ra2==rb2;
}

void make_sa() {
    int i,j,p,m,*x=wx,*y=wy;
    m=4000;
    for (i=0;i<m;i++) cc[i]=0;
    for (i=0;i<len;i++) cc[x[i]=s[i]]++;
    for (i=1;i<m;i++) cc[i]+=cc[i-1];
    for (i=len-1;i>=0;i--) sa[--cc[x[i]]]=i;

    for (int k=1;k<=len;k<<=1) {
        p=0;
        for (i=len-k;i<len;i++) y[p++]=i;
        for (i=0;i<len;i++) if (sa[i]>=k) y[p++]=sa[i]-k;
        for (i=0;i<m;i++) cc[i]=0;
        for (i=0;i<len;i++) cc[x[y[i]]]++;
        for (i=1;i<m;i++) cc[i]+=cc[i-1];
        for (i=len-1;i>=0;i--) sa[--cc[x[y[i]]]]=y[i];
        swap(x,y);
        x[sa[0]]=0;
        p=1;
        for (i=1;i<len;i++)
            x[sa[i]]=cmp(y,sa[i],sa[i-1],k)? p-1:p++;
        if (p>=len) break;
        m=p;
    }
}

void make_hei() {
    for (int i=0;i<len;i++) rak[sa[i]]=i;
    hei[0]=0;
    int k=0;
    for (int i=0;i<len;i++) {
        if (!rak[i]) continue;
        int j=sa[rak[i]-1];
        if (k) k--;
        while (s[i+k]==s[j+k]&&i+k<len&&j+k<len) k++;
        hei[rak[i]]=k;
    }
}

bool vis[N];

bool check(int x) {
    int l,r,cnt;
    l=r=0; cnt=0;
    memset(vis,0,sizeof(vis));
    if (belong[sa[r]]&&!vis[belong[sa[r]]])    //不能是无用字符 
        vis[belong[sa[r]]]=1,cnt++;
    while (r<len) {
        while (hei[r+1]>=x) {
            r++; 
            if (belong[sa[r]]&&!vis[belong[sa[r]]]) 
                vis[belong[sa[r]]]=1,cnt++;
        }
        if (cnt>=n) return 1;
        l=r+1; r=l;
        memset(vis,0,sizeof(vis));
        cnt=0;
        if (belong[sa[r]]&&!vis[belong[sa[r]]]) 
            vis[belong[sa[r]]]=1,cnt++;
    }
    return 0;
}

void solve() {
    int ans=0;
    while (L<=R) {
        int mid=(L+R)>>1;
        if (check(mid)) ans=L,L=mid+1;
        else R=mid-1;
    }
    printf("%d\n",ans);
}

int main()
{
    len=0;
    scanf("%d",&n);
    for (int i=1;i<=n;i++) {
        int k,x,y;
        scanf("%d%d",&k,&x); R=max(R,k);
        s[len++]=0; s[len++]=base; belong[len-1]=i;
        for (int i=1;i<k;i++) {
            scanf("%d",&y);
            s[len++]=y-x+base;
            belong[len-1]=i; x=y;
        }
    }
    make_sa();
    make_hei();
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值