洛谷 P3501 [POI2010]ANT-Antisymmetry
由题意得,“反对称”字符串长度一定为偶数。
原串正着 Hash,取反后的串倒着 Hash,然后枚举中间点,二分长度。
洛谷 P2852 [USACO06DEC]Milk Patterns G
显然答案具有单调性,二分最大长度,Hash + 排序 O ( n log n ) O(n \log n) O(nlogn) 算出现次数。
时间复杂度 O ( n log 2 n ) O(n \log^2 n) O(nlog2n)。
洛谷 P2757 [国家集训队]等差子序列
L e n ≥ 3 Len\geq3 Len≥3,所以只需找到 L e n = 3 Len=3 Len=3 的等差子序列即可。枚举中项,对于每一个 A i A_i Ai 判断是否存在 A i + k A_i+k Ai+k 和 A i − k A_i-k Ai−k 在 A i A_i Ai 的异侧。
建立一个长为 N N N 的序列 X X X,初始全为 0 0 0,从左到右扫一遍 { A i } \{A_i\} {Ai},每次将 X A i X_{A_i} XAi 设为 1 1 1,那么如果不存在 A i + k A_i+k Ai+k 和 A i − k A_i-k Ai−k 在 A i A_i Ai 的异侧,意味着所有的 A i + k A_i+k Ai+k 和 A i − k A_i-k Ai−k 已经被加入到 X X X 中,那么此时以 X A i X_{A_i} XAi 为中点,两端不超过边界的 X X X 的子串(必定是前缀或后缀)一定为回文串。
回文串可以使用 Hash 判断,因为 Hash 也算序列问题,所以考虑用线段树维护序列 X X X 的 Hash。
洛谷 P8023 [ONTAK2015] Tasowanie
直接归并会出现的问题是,因为序列不是有序的,所以无法处理两序列当前位置的值相同的情况。
先考虑如何暴力解决这个问题,如果 a i = b j a_i=b_j ai=bj,则判断 a i + 1 a_{i+1} ai+1 是否等于 b j + 1 b_{j+1} bj+1 ,如果不相等,则取小的一列更优,如果相等,则继续判断 a i + 2 a_{i+2} ai+2 与 b j + 2 b_{j+2} bj+2 是否相等,以此类推。
暴力的时间复杂度直接挂到了 O ( ( n + m ) 2 ) O((n+m)^2) O((n+m)2),问题在于暴力判断 a i a_i ai 与 b j b_j bj 之后相等的值。考虑二分其后值相等的序列长度,Hash 判断序列是否相等,则复杂度优化到 O ( ( n + m ) log ( n + m ) ) O((n+m)\log(n+m)) O((n+m)log(n+m))。
洛谷 P2601 [ZJOI2009]对称的正方形
经典题,二维回文。
与一维回文类比,使用二维 Hash,算三个 Hash 判断上下和左右对称,枚举中间点并二分正方形边长。