题目描述
N(3<=N<=200)头奶牛要办一个新年晚会。每头牛都会烧几道菜。一共有D(5<=D<=100)道不同的菜肴。每道菜都可以用一个1到D之间的数来表示。 晚会的主办者希望能尽量多的菜肴被带到晚会,但是每道菜的数目又给出了限制。每头奶牛可以带K(1<=K<=5)道菜,但是必须是各不相同的(例如,一头牛不能带三块馅饼,但是可以带上一块馅饼,一份面包,和一些美味的桔子酱苜蓿)。那么,究竟有多少菜可以被带来晚会呢?
输入格式
第一行包括三个整数N,K和D。 第二行有D个非负整数,表示每种菜可以带到晚会上的数目限制。 第三行到第N+2行,每行包括一个整数Z,表示一头牛可以准备的菜的道数;之后Z个整数,表示菜的标号,首先是第一种菜,然后是第二种菜,以此类推。
输出格式
仅一行一个整数,表示可以带到晚会上的最多的菜的数目。
input
4 3 5
2 2 2 2 3
4 1 2 3 4
4 2 3 4 5
3 1 2 4
3 1 2 3
output
9
Solution
这是一道网络流建模的基础题了。
首先我们要把一个问题转化为网络流问题,首先要明确它的约束条件。
题目中菜的限制数和奶牛带的数是限制条件,把他转化成网络流中边的容量。
首先我们建一个超级源点,分别连向每只奶牛,容量为k,奶牛与菜之间根据输入的连边,容量为1(每种菜一只奶牛只能带一个),最后把菜连向超级汇点,容量为限制
代码:
//By Bibi
/// .-~~~~~~~~~-._ _.-~~~~~~~~~-.
/// __.' ~. .~ `.__
/// .'// \./ \\`.
/// .'// | \\`.
/// .'// .