四、扫雷 (Mine)
相信大家都玩过扫雷的游戏。那是在一个n*m的矩阵里面有一些雷,要你根据一些信息找出雷来。万圣节到了,“余”人国流行起了一种简单的扫雷游戏,这个游戏规则和扫雷一样,如果某个格子没有雷,那么它里面的数字表示和它8连通的格子里面雷的数目。现在棋盘是n×2的,第一列里面某些格子是雷,而第二列没有雷,如下图:
由于第一列的雷可能有多种方案满足第二列的数的限制,你的任务即根据第二列的信息确定第一列雷有多少种摆放方案。
输入文件:
第一行为N,第二行有N个数,依次为第二列的格子中的数。(1<= N <= 10000)
输出文件:
一个数,即第一列中雷的摆放方案数。
Sample Input
2
1 1
Sample Output
2
这道题应该是很简单的,但是由于自身的心理障碍,而没有做出来,因为规模不算小,如果01枚举的话,感觉是明显会超时的,于是一直想用动规,但是一直想不出合适的方程来。
最后看了题解,才明白,这道题虽然规模大,但是剪枝是非常强力的,因为解的数量不会超过2(有证明,因此用搜索是完全可以的)
提交次数:3
1、WA 90,没有考虑第一格为0的情况。
2、WA 80,改错了,第一格为0弄成了第一格为2
3、AC
这给我一个启示,有时候,看起来是次优解,但是说不一定他就是最优解呢。。既然实现起来很容易,何不先做出来,再用实际的数据来测试效果呢?反正就算不好,也可以最后当作对拍用的程序。
#include <cstdio>
#include <cstring>
#include <string>
long ans = 0;
long n;
long m[11000];
char used[11000];
long getint()
{
char tmp;long rs=0;bool sgn=1;
do tmp = getchar();
while (!isdigit(tmp)&&tmp-'-');
if (tmp=='-'){tmp=getchar();sgn=0;}
do rs=(rs<<3)+(rs<<1)+tmp-'0';
while (isdigit(tmp=getchar()));
return sgn?rs:-rs;
}
void dfs(long l)
{
if (l == n+1)
{
if (used[n-1]+used[n]==m[n])
ans ++;
return;
}
if (used[l-2]+used[l-1]==m[l-1])
{
dfs(l+1);
}
if (used[l-2]+used[l-1]+1==m[l-1])
{
used[l] = 1;
dfs(l+1);
}
}
int main()
{
freopen("mine.out","w",stdout);
freopen("mine.in","r",stdin);
n = getint();
for (long i=1;i<n+1;i++)
m[i] = getint();
if (m[1] == 0)
{
dfs(3);
}
else if (m[1] == 2)
{
used[1] = 1;
dfs(2);
}
else if (m[1] == 1)
{
dfs(2);
for (long i=1;i<n+1;i++)
used[i] = 0;
used[1] = 1;
dfs(2);
}
printf("%ld",ans);
return 0;
}