混乱的队伍(mixup2.pas/c/cpp)
【题目描述】
LongDD的N(4 <= N <= 16)个员工每人都有一个唯一的编号S_i(1 <= S_i <= 25,000).
员工们为他们的编号感到骄傲, 所以每个人都把他的编号刻在一个金牌上, 并且把
金牌挂在他们的脖子上.
员工们对在吃饭的时候被排成一支“混乱”的队伍非常反感. 如果一个队伍里任意
两相邻的人的编号相差超过 K (1 <= K <= 3400), 它就被称为是混乱的. 比如说,
当N = 6, K = 1 时,1, 3, 5, 2, 6, 4 就是一支“混乱”的队伍, 但是 1, 3, 6, 5,
2, 4 不是(因为5和6 只相差1).
那么, 有多少种能够使员工们排成“混乱”的队伍的方案呢?
程序名: mixup2
【输入格式】
* 第 1 行: 用空格隔开的两个整数 N和K
* 第 2..N+1 行: 第i+1 行包含了一个用来表示第 i个员工的编号的整数: S_i
【输入样例】
4 1
3
4
2
1
【输出格式】
* 第 1 行: 只有一个整数, 表示有多少种能够使员工们排成 “混乱” 的队伍的方案.
答案保证是一个在64 位范围内的整数.
【输出样例】
2
【输出解释】
两种方法分别是:
3 1 4 2
2 4 1 3
【题目描述】
LongDD的N(4 <= N <= 16)个员工每人都有一个唯一的编号S_i(1 <= S_i <= 25,000).
员工们为他们的编号感到骄傲, 所以每个人都把他的编号刻在一个金牌上, 并且把
金牌挂在他们的脖子上.
员工们对在吃饭的时候被排成一支“混乱”的队伍非常反感. 如果一个队伍里任意
两相邻的人的编号相差超过 K (1 <= K <= 3400), 它就被称为是混乱的. 比如说,
当N = 6, K = 1 时,1, 3, 5, 2, 6, 4 就是一支“混乱”的队伍, 但是 1, 3, 6, 5,
2, 4 不是(因为5和6 只相差1).
那么, 有多少种能够使员工们排成“混乱”的队伍的方案呢?
程序名: mixup2
【输入格式】
* 第 1 行: 用空格隔开的两个整数 N和K
* 第 2..N+1 行: 第i+1 行包含了一个用来表示第 i个员工的编号的整数: S_i
【输入样例】
4 1
3
4
2
1
【输出格式】
* 第 1 行: 只有一个整数, 表示有多少种能够使员工们排成 “混乱” 的队伍的方案.
答案保证是一个在64 位范围内的整数.
【输出样例】
2
【输出解释】
两种方法分别是:
3 1 4 2
2 4 1 3
这道题我本来应该可以AC的,但是后来时间不够了,加之很慌张,导致没调出来,就差一点点了。
这道题因为2^16很小,所以用不着滚动sta和f,也用不着清空hash,直接加在后面就行了,这样节约了时间。
不过我保留了惯用的开hash的方法,因为这样速度优化很多,也不难实现,如果枚举两层所有的状态,这样太浪费了。
#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#define min(a,b) ((a)<(b)?(a):(b))
typedef long long ll;
using std::cout;
long sta[200000];
ll f[200000][20];
long hash[200000];
long c[20];
long cnt = 0;
long getint()
{
long rs=0;bool sgn=1;char tmp;
do tmp = getchar();
while (!isdigit(tmp)&&tmp-'-');
if (tmp == '-'){tmp=getchar();sgn=0;}
do rs=(rs<<3)+(rs<<1)+tmp-'0';
while (isdigit(tmp=getchar()));
return sgn?rs:-rs;
}
int main()
{
freopen("mixup2.in","r",stdin);
freopen("mixup2.out","w",stdout);
long n = getint();
long k = getint();
for (long i=1;i<n+1;i++)
{
c[i] = getint();
}
c[0] = 0x3f3f3f3f;
long pos = 1;
for (long i=1;i<n+1;i++)
{
f[1<<i][i] = 1;
hash[1<<i] = true;
cnt ++;
sta[cnt] = 1<<i;
}
for (long l=pos;l<cnt+1;l++)
{
pos = cnt+1;
long last = sta[l];
for (long i=1;i<n+1;i++)
{
if (last & (1<<i))
{
long now;
for (long j=1;j<n+1;j++)
{
if (!(last&(1<<j)) && abs(c[j]-c[i])>k)
{
now = last | (1<<j);
f[now][j] += f[last][i];
if (!hash[now])
{
hash[now] = true;
cnt ++;
sta[cnt] = now;
}
}
}
}
}
}
ll ans = 0;
for (long i=1;i<n+1;i++)
{
ans += f[(1<<(n+1))-2][i];
}
cout << ans;
return 0;
}