题意:
给定:
两个长度为n的数列A 、B
一个有m个元素的集合K
询问Q次
每次询问[l,r],输出区间内满足|Bi-Bj|∈K 的最大Ai+Aj
数据约定:
n,Q<=100000
m <= 10
0<=A[i]<=1000000000
1<=B[i]<=n
1<=K[i]<=n
保证B[i]互不相等
思路:
考虑利用m很小的性质作为突破口:
对于每一个
B
i
B_i
Bi,我们都可以直接枚举出一个合法的
B
j
B_j
Bj满足:
∣
B
i
−
B
j
∣
∈
K
|Bi-Bj|∈K
∣Bi−Bj∣∈K且
A
i
+
A
j
Ai+Aj
Ai+Aj最大。
但此时出现了一个矛盾点:
对于每次枚举
B
i
B_i
Bi和
B
j
B_j
Bj以后,得到的
A
i
+
A
j
A_i+A_j
Ai+Aj,我们应该如何维护,放在下标为
i
i
i的点还是放在下标为
j
j
j的点呢?
对于这种矛盾,一个有效地处理方式就是离线处理询问。
我们将询问离线以后,按右端点进行排序。当我们询问区间
[
l
i
,
r
i
]
[l_i,r_i]
[li,ri]时,我们只枚举
[
1
,
r
i
]
[1,r_i]
[1,ri]区间的点作为
B
i
B_i
Bi和
B
j
B_j
Bj
(
i
<
j
)
(i<j)
(i<j)。
随后将所得的
A
i
+
A
j
A_i+A_j
Ai+Aj的值放在下标为
i
i
i的位置,使用数据结构进行维护。
这样每次查询的值就是当前区间的合法最大值了。
此题得解。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
#define lson rt<<1
#define rson rt<<1|1
const int A = 2e5 + 10;
const int B = 100 + 10;
class Qra{
public:
int l,r;
int id;
bool operator<(const Qra& rhs) const{
if(r == rhs.r) return l < rhs.l;
return r < rhs.r;
}
}Q[A<<1];
class Seg_Tree{
public:
int l,r;
int Mx;
}Tree[A<<2];
int a[A],b[A],k[B],pos[A],Ans[A],Out[A];
int n,q,m;
void push_up(int rt){
Tree[rt].Mx = max(Tree[lson].Mx,Tree[rson].Mx);
}
void Build_Tree(int rt,int l,int r){
Tree[rt].l = l,Tree[rt].r = r;
Tree[rt].Mx = 0;
if(l == r) return;
int mid = (l+r)>>1;
Build_Tree(lson,l,mid);
Build_Tree(rson,mid+1,r);
push_up(rt);
}
void Update_Tree(int rt,int pos,int val){
int l = Tree[rt].l,r = Tree[rt].r;
if(l == r){
Tree[rt].Mx = val;
return;
}
int mid = (l+r)>>1;
if(pos <= mid) Update_Tree(lson,pos,val);
else Update_Tree(rson,pos,val);
push_up(rt);
}
int Query(int rt,int st,int ed){
int l = Tree[rt].l,r = Tree[rt].r;
if(st<=l && r<=ed){
return Tree[rt].Mx;
}
int res = 0;
int mid = (l+r)>>1;
if(st<=mid) res = max(res,Query(lson,st,ed));
if(ed> mid) res = max(res,Query(rson,st,ed));
return res;
}
void check(int y,int id){
if(y>=1 && y<=n && pos[y]<=id){
if(a[id]+a[pos[y]] > Ans[pos[y]]){
Update_Tree(1,pos[y],a[id]+a[pos[y]]);
Ans[pos[y]] = a[id]+a[pos[y]];
}
}
}
void update(int id){
int y = 0;
for(int i=1 ;i<=m ;i++){
y = b[id] - k[i];
check(y,id);
y = b[id] + k[i];
check(y,id);
}
}
int main(){
scanf("%d%d%d",&n,&q,&m);
for(int i=1 ;i<=n ;i++) scanf("%d",&a[i]);
for(int i=1 ;i<=n ;i++) scanf("%d",&b[i]);
for(int i=1 ;i<=m ;i++) scanf("%d",&k[i]);
for(int i=1 ;i<=q ;i++){
scanf("%d%d",&Q[i].l,&Q[i].r);
Q[i].id = i;
}
sort(Q+1,Q+1+q);
for(int i=1 ;i<=n ;i++){
pos[b[i]] = i;
}
memset(Ans,0,sizeof(Ans));
Build_Tree(1,1,n);
int ed = 1;
for(int i=1 ;i<=q ;i++){
while(ed<=n && ed<=Q[i].r) update(ed++);
Out[Q[i].id] = Query(1,Q[i].l,Q[i].r);
}
for(int i=1 ;i<=q ;i++){
printf("%d\n",Out[i]);
}
return 0;
}
该博客介绍了如何利用离线处理和线段树来解决51Nod的一道竞赛题目,题目要求在给定数列A、B和集合K中,对每个区间[l, r]找出满足|Bi - Bj| ∈ K的最大Ai + Aj。由于数据规模限制,可以枚举B,并通过离线排序和线段树来维护最大值,从而高效解答问题。"
130858761,10385585,Python SHA-1算法详解:实现与安全性分析,"['Python', '算法', '安全性', 'hashlib']
261

被折叠的 条评论
为什么被折叠?



