高中数学如何解决阿里面试算法题

本文介绍了如何运用高中数学知识解决一道阿里面试的动态规划问题。通过动态规划和均值不等式,找到最优解策略,将正整数n拆分为若干数之和,使乘积M达到最大。最后提出一种优化算法,利用快速幂在O(logn)时间内求解,空间复杂度为O(1)。
摘要由CSDN通过智能技术生成

大家好,我是新熊君。

今天跟大家分享一道阿里的算法面试题。

题目描述

给定一个正整数 n n n,把它拆分为若干个数的和,记这若干个数的积为 M M M,求 M M M的最大值。

题目分析

这道题正常的思路是使用动态规划算法。

假设 d p [ n ] dp[n] dp[n] 为正整数 n n n 拆分后能够得到最大的积。

状态转移时只需要遍历小于 n n n的每一个正整数 k k k

k ∗ d p [ i − k ] k*dp[i-k] kdp[ik] 的最大值,即:

d p [ n ] = m a x ( n , m a x ( k ∗ d p [ i − k ] ) ) dp[n] = max(n, max(k * dp[i-k])) dp[n]=max(n,max(kdp[ik]))
k ∈ ( 0 , i ) k \in (0, i) k<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值