1、以下是使用Java语言操作Impala的Spark API的示例代码:
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.impala.ImpalaJDBCWrapper;
public class ImpalaSparkExample {
public static void main(String[] args) {
// 创建Spark配置
SparkConf conf = new SparkConf().setAppName("ImpalaSparkExample");
// 创建Spark上下文
SparkContext sc = new SparkContext(conf);
// 创建SQL上下文
SQLContext sqlContext = new SQLContext(sc);
// 设置Impala连接信息
String impalaHost = "localhost";
String impalaPort = "21050";
String impalaDatabase = "test";
String impalaUser = "user";
String impalaPassword = "password";
// 创建Impala JDBC包装器
ImpalaJDBCWrapper impalaJDBCWrapper = new ImpalaJDBCWrapper(impalaHost, impalaPort, impalaDatabase,
impalaUser, impalaPassword);
// 读取Impala表数据
DataFrame df = sqlContext.read().format("jdbc")
.option("url", impalaJDBCWrapper.getConnectionString())
.option("dbtable", "test_table")
.option("user", impalaJDBCWrapper.getUser())
.option("password", impalaJDBCWrapper.getPassword())
.load();
// 在Spark中处理数据
DataFrame resultDf = df.select("col1", "col2")
.filter("col1 > 10");
// 将结果写入Impala表
resultDf.write().format("jdbc")
.option("url", impalaJDBCWrapper.getConnectionString())
.option("dbtable", "result_table")
.option("user", impalaJDBCWrapper.getUser())
.option("password", impalaJDBCWrapper.getPassword())
.mode(SaveMode.Overwrite)
.save();
// 关闭Spark上下文
sc.stop();
}
}
在上面的示例代码中,我们首先创建了Spark配置和Spark上下文,然后创建了SQL上下文。接下来,我们设置了Impala连接信息,并创建了Impala JDBC包装器。然后,我们使用Spark SQL读取Impala表数据,并在Spark中处理数据。最后,我们将结果写入Impala表。最后,我们关闭了Spark上下文。
2、以下是使用Java语言操作Impala SQL的Spark API的示例代码:
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.impala.ImpalaJDBCWrapper;
public class ImpalaSparkSQLExample {
public static void main(String[] args) {
// 创建Spark配置
SparkConf conf = new SparkConf().setAppName("ImpalaSparkSQLExample");
// 创建Spark上下文
SparkContext sc = new SparkContext(conf);
// 创建SQL上下文
SQLContext sqlContext = new SQLContext(sc);
// 设置Impala连接信息
String impalaHost = "localhost";
String impalaPort = "21050";
String impalaDatabase = "test";
String impalaUser = "user";
String impalaPassword = "password";
// 创建Impala JDBC包装器
ImpalaJDBCWrapper impalaJDBCWrapper = new ImpalaJDBCWrapper(impalaHost, impalaPort, impalaDatabase,
impalaUser, impalaPassword);
// 执行Impala SQL语句
String sql = "SELECT col1, col2 FROM test_table WHERE col1 > 10";
DataFrame df = sqlContext.read().format("jdbc")
.option("url", impalaJDBCWrapper.getConnectionString())
.option("query", sql)
.option("user", impalaJDBCWrapper.getUser())
.option("password", impalaJDBCWrapper.getPassword())
.load();
// 将结果写入Impala表
df.write().format("jdbc")
.option("url", impalaJDBCWrapper.getConnectionString())
.option("dbtable", "result_table")
.option("user", impalaJDBCWrapper.getUser())
.option("password", impalaJDBCWrapper.getPassword())
.mode(SaveMode.Overwrite)
.save();
// 关闭Spark上下文
sc.stop();
}
}
在上面的示例代码中,我们首先创建了Spark配置和Spark上下文,然后创建了SQL上下文。接下来,我们设置了Impala连接信息,并创建了Impala JDBC包装器。然后,我们执行了Impala SQL语句,并将结果写入Impala表。最后,我们关闭了Spark上下文。
3、spark 操作impala sql 的show create table语句的样例代码
以下是使用Java语言操作Impala SQL的SHOW CREATE TABLE语句的Spark API的示例代码:
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.impala.ImpalaJDBCWrapper;
public class ImpalaShowCreateTableExample {
public static void main(String[] args) {
// 创建Spark配置
SparkConf conf = new SparkConf().setAppName("ImpalaShowCreateTableExample");
// 创建Spark上下文
SparkContext sc = new SparkContext(conf);
// 创建SQL上下文
SQLContext sqlContext = new SQLContext(sc);
// 设置Impala连接信息
String impalaHost = "localhost";
String impalaPort = "21050";
String impalaDatabase = "test";
String impalaUser = "user";
String impalaPassword = "password";
// 创建Impala JDBC包装器
ImpalaJDBCWrapper impalaJDBCWrapper = new ImpalaJDBCWrapper(impalaHost, impalaPort, impalaDatabase,
impalaUser, impalaPassword);
// 执行SHOW CREATE TABLE语句
String sql = "SHOW CREATE TABLE test_table";
DataFrame df = sqlContext.read().format("jdbc")
.option("url", impalaJDBCWrapper.getConnectionString())
.option("query", sql)
.option("user", impalaJDBCWrapper.getUser())
.option("password", impalaJDBCWrapper.getPassword())
.load();
// 获取CREATE TABLE语句
String createTableSql = df.collectAsList().get(0).getString(0);
// 将CREATE TABLE语句写入文件
String filePath = "/path/to/create_table.sql";
sc.parallelize(createTableSql).saveAsTextFile(filePath);
// 关闭Spark上下文
sc.stop();
}
}
在上面的示例代码中,我们首先创建了Spark配置和Spark上下文,然后创建了SQL上下文。接下来,我们设置了Impala连接信息,并创建了Impala JDBC包装器。然后,我们执行了SHOW CREATE TABLE语句,并将结果写入DataFrame中。接着,我们从DataFrame中获取CREATE TABLE语句,并将其写入文件。最后,我们关闭了Spark上下文。
4、spark 操作impala sql 的create table语句的样例代码
以下是使用Java语言操作Impala SQL的CREATE TABLE语句的Spark API的示例代码:
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.impala.ImpalaJDBCWrapper;
public class ImpalaCreateTableExample {
public static void main(String[] args) {
// 创建Spark配置
SparkConf conf = new SparkConf().setAppName("ImpalaCreateTableExample");
// 创建Spark上下文
SparkContext sc = new SparkContext(conf);
// 创建SQL上下文
SQLContext sqlContext = new SQLContext(sc);
// 设置Impala连接信息
String impalaHost = "localhost";
String impalaPort = "21050";
String impalaDatabase = "test";
String impalaUser = "user";
String impalaPassword = "password";
// 创建Impala JDBC包装器
ImpalaJDBCWrapper impalaJDBCWrapper = new ImpalaJDBCWrapper(impalaHost, impalaPort, impalaDatabase,
impalaUser, impalaPassword);
// 执行CREATE TABLE语句
String sql = "CREATE TABLE test_table (col1 INT, col2 STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ','";
sqlContext.sql(sql);
// 读取数据并写入Impala表
String filePath = "/path/to/data.csv";
sqlContext.read().format("csv")
.option("header", "true")
.option("inferSchema", "true")
.option("delimiter", ",")
.load(filePath)
.write().format("jdbc")
.option("url", impalaJDBCWrapper.getConnectionString())
.option("dbtable", "test_table")
.option("user", impalaJDBCWrapper.getUser())
.option("password", impalaJDBCWrapper.getPassword())
.mode(SaveMode.Overwrite)
.save();
// 关闭Spark上下文
sc.stop();
}
}
在上面的示例代码中,我们首先创建了Spark配置和Spark上下文,然后创建了SQL上下文。接下来,我们设置了Impala连接信息,并创建了Impala JDBC包装器。然后,我们执行了CREATE TABLE语句创建Impala表。接着,我们读取数据并将其写入Impala表。最后,我们关闭了Spark上下文。
5、spark 操作impala sql 的set REQUEST_POOL=newsales2; select * from 语句的样例代码
以下是使用Java语言操作Impala SQL的SET REQUEST_POOL和SELECT * FROM语句的Spark API的示例代码:
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.impala.ImpalaJDBCWrapper;
public class ImpalaSetRequestPoolExample {
public static void main(String[] args) {
// 创建Spark配置
SparkConf conf = new SparkConf().setAppName("ImpalaSetRequestPoolExample");
// 创建Spark上下文
SparkContext sc = new SparkContext(conf);
// 创建SQL上下文
SQLContext sqlContext = new SQLContext(sc);
// 设置Impala连接信息
String impalaHost = "localhost";
String impalaPort = "21050";
String impalaDatabase = "test";
String impalaUser = "user";
String impalaPassword = "password";
// 创建Impala JDBC包装器
ImpalaJDBCWrapper impalaJDBCWrapper = new ImpalaJDBCWrapper(impalaHost, impalaPort, impalaDatabase,
impalaUser, impalaPassword);
// 设置请求池
String requestPool = "newsales2";
String setSql = "SET REQUEST_POOL=" + requestPool;
sqlContext.sql(setSql);
// 执行SELECT语句
String selectSql = "SELECT * FROM test_table";
DataFrame df = sqlContext.read().format("jdbc")
.option("url", impalaJDBCWrapper.getConnectionString())
.option("query", selectSql)
.option("user", impalaJDBCWrapper.getUser())
.option("password", impalaJDBCWrapper.getPassword())
.load();
// 将结果写入Impala表
df.write().format("jdbc")
.option("url", impalaJDBCWrapper.getConnectionString())
.option("dbtable", "result_table")
.option("user", impalaJDBCWrapper.getUser())
.option("password", impalaJDBCWrapper.getPassword())
.mode(SaveMode.Overwrite)
.save();
// 关闭Spark上下文
sc.stop();
}
}
在上面的示例代码中,我们首先创建了Spark配置和Spark上下文,然后创建了SQL上下文。接下来,我们设置了Impala连接信息,并创建了Impala JDBC包装器。然后,我们使用SET REQUEST_POOL语句设置请求池。接着,我们执行了SELECT * FROM语句,并将结果写入Impala表。最后,我们关闭了Spark上下文。
6、spark 操作impala sql 的select count(1) from 语句的样例代码
以下是使用Java语言操作Impala SQL的SELECT COUNT(1) FROM语句的Spark API的示例代码:
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.impala.ImpalaJDBCWrapper;
public class ImpalaSelectCountExample {
public static void main(String[] args) {
// 创建Spark配置
SparkConf conf = new SparkConf().setAppName("ImpalaSelectCountExample");
// 创建Spark上下文
SparkContext sc = new SparkContext(conf);
// 创建SQL上下文
SQLContext sqlContext = new SQLContext(sc);
// 设置Impala连接信息
String impalaHost = "localhost";
String impalaPort = "21050";
String impalaDatabase = "test";
String impalaUser = "user";
String impalaPassword = "password";
// 创建Impala JDBC包装器
ImpalaJDBCWrapper impalaJDBCWrapper = new ImpalaJDBCWrapper(impalaHost, impalaPort, impalaDatabase,
impalaUser, impalaPassword);
// 执行SELECT COUNT(1)语句
String sql = "SELECT COUNT(1) FROM test_table";
DataFrame df = sqlContext.read().format("jdbc")
.option("url", impalaJDBCWrapper.getConnectionString())
.option("query", sql)
.option("user", impalaJDBCWrapper.getUser())
.option("password", impalaJDBCWrapper.getPassword())
.load();
// 获取计数结果
long count = df.collectAsList().get(0).getLong(0);
// 输出计数结果
System.out.println("Count: " + count);
// 关闭Spark上下文
sc.stop();
}
}
在上面的示例代码中,我们首先创建了Spark配置和Spark上下文,然后创建了SQL上下文。接下来,我们设置了Impala连接信息,并创建了Impala JDBC包装器。然后,我们执行了SELECT COUNT(1)语句并将结果写入DataFrame中。接着,我们从DataFrame中获取计数结果,并将其输出。最后,我们关闭了Spark上下文。
7、依赖包
org.apache.spark.sql.impala.ImpalaJDBCWrapper是Spark SQL中Impala JDBC包装器的类名,它不是独立的依赖包。实际上,它是由Spark SQL的spark-sql_2.x依赖库提供的。
因此,要在Java项目中使用org.apache.spark.sql.impala.ImpalaJDBCWrapper,你需要将以下依赖项添加到你的项目中:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
在上面的依赖项中, s c a l a . v e r s i o n 和 {scala.version}和 scala.version和{spark.version}分别是Scala版本和Spark版本的占位符,你需要将它们替换为你实际使用的版本号。