使用java语言,spark操作impala的api的样例代码

1、以下是使用Java语言操作Impala的Spark API的示例代码:

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.impala.ImpalaJDBCWrapper;

public class ImpalaSparkExample {

    public static void main(String[] args) {

        // 创建Spark配置
        SparkConf conf = new SparkConf().setAppName("ImpalaSparkExample");

        // 创建Spark上下文
        SparkContext sc = new SparkContext(conf);

        // 创建SQL上下文
        SQLContext sqlContext = new SQLContext(sc);

        // 设置Impala连接信息
        String impalaHost = "localhost";
        String impalaPort = "21050";
        String impalaDatabase = "test";
        String impalaUser = "user";
        String impalaPassword = "password";

        // 创建Impala JDBC包装器
        ImpalaJDBCWrapper impalaJDBCWrapper = new ImpalaJDBCWrapper(impalaHost, impalaPort, impalaDatabase,
                impalaUser, impalaPassword);

        // 读取Impala表数据
        DataFrame df = sqlContext.read().format("jdbc")
                .option("url", impalaJDBCWrapper.getConnectionString())
                .option("dbtable", "test_table")
                .option("user", impalaJDBCWrapper.getUser())
                .option("password", impalaJDBCWrapper.getPassword())
                .load();

        // 在Spark中处理数据
        DataFrame resultDf = df.select("col1", "col2")
                .filter("col1 > 10");

        // 将结果写入Impala表
        resultDf.write().format("jdbc")
                .option("url", impalaJDBCWrapper.getConnectionString())
                .option("dbtable", "result_table")
                .option("user", impalaJDBCWrapper.getUser())
                .option("password", impalaJDBCWrapper.getPassword())
                .mode(SaveMode.Overwrite)
                .save();

        // 关闭Spark上下文
        sc.stop();
    }
}

在上面的示例代码中,我们首先创建了Spark配置和Spark上下文,然后创建了SQL上下文。接下来,我们设置了Impala连接信息,并创建了Impala JDBC包装器。然后,我们使用Spark SQL读取Impala表数据,并在Spark中处理数据。最后,我们将结果写入Impala表。最后,我们关闭了Spark上下文。

2、以下是使用Java语言操作Impala SQL的Spark API的示例代码:

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.impala.ImpalaJDBCWrapper;

public class ImpalaSparkSQLExample {

    public static void main(String[] args) {

        // 创建Spark配置
        SparkConf conf = new SparkConf().setAppName("ImpalaSparkSQLExample");

        // 创建Spark上下文
        SparkContext sc = new SparkContext(conf);

        // 创建SQL上下文
        SQLContext sqlContext = new SQLContext(sc);

        // 设置Impala连接信息
        String impalaHost = "localhost";
        String impalaPort = "21050";
        String impalaDatabase = "test";
        String impalaUser = "user";
        String impalaPassword = "password";

        // 创建Impala JDBC包装器
        ImpalaJDBCWrapper impalaJDBCWrapper = new ImpalaJDBCWrapper(impalaHost, impalaPort, impalaDatabase,
                impalaUser, impalaPassword);

        // 执行Impala SQL语句
        String sql = "SELECT col1, col2 FROM test_table WHERE col1 > 10";
        DataFrame df = sqlContext.read().format("jdbc")
                .option("url", impalaJDBCWrapper.getConnectionString())
                .option("query", sql)
                .option("user", impalaJDBCWrapper.getUser())
                .option("password", impalaJDBCWrapper.getPassword())
                .load();

        // 将结果写入Impala表
        df.write().format("jdbc")
                .option("url", impalaJDBCWrapper.getConnectionString())
                .option("dbtable", "result_table")
                .option("user", impalaJDBCWrapper.getUser())
                .option("password", impalaJDBCWrapper.getPassword())
                .mode(SaveMode.Overwrite)
                .save();

        // 关闭Spark上下文
        sc.stop();
    }
}

在上面的示例代码中,我们首先创建了Spark配置和Spark上下文,然后创建了SQL上下文。接下来,我们设置了Impala连接信息,并创建了Impala JDBC包装器。然后,我们执行了Impala SQL语句,并将结果写入Impala表。最后,我们关闭了Spark上下文。

3、spark 操作impala sql 的show create table语句的样例代码

以下是使用Java语言操作Impala SQL的SHOW CREATE TABLE语句的Spark API的示例代码:

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.impala.ImpalaJDBCWrapper;

public class ImpalaShowCreateTableExample {

    public static void main(String[] args) {

        // 创建Spark配置
        SparkConf conf = new SparkConf().setAppName("ImpalaShowCreateTableExample");

        // 创建Spark上下文
        SparkContext sc = new SparkContext(conf);

        // 创建SQL上下文
        SQLContext sqlContext = new SQLContext(sc);

        // 设置Impala连接信息
        String impalaHost = "localhost";
        String impalaPort = "21050";
        String impalaDatabase = "test";
        String impalaUser = "user";
        String impalaPassword = "password";

        // 创建Impala JDBC包装器
        ImpalaJDBCWrapper impalaJDBCWrapper = new ImpalaJDBCWrapper(impalaHost, impalaPort, impalaDatabase,
                impalaUser, impalaPassword);

        // 执行SHOW CREATE TABLE语句
        String sql = "SHOW CREATE TABLE test_table";
        DataFrame df = sqlContext.read().format("jdbc")
                .option("url", impalaJDBCWrapper.getConnectionString())
                .option("query", sql)
                .option("user", impalaJDBCWrapper.getUser())
                .option("password", impalaJDBCWrapper.getPassword())
                .load();

        // 获取CREATE TABLE语句
        String createTableSql = df.collectAsList().get(0).getString(0);

        // 将CREATE TABLE语句写入文件
        String filePath = "/path/to/create_table.sql";
        sc.parallelize(createTableSql).saveAsTextFile(filePath);

        // 关闭Spark上下文
        sc.stop();
    }
}

在上面的示例代码中,我们首先创建了Spark配置和Spark上下文,然后创建了SQL上下文。接下来,我们设置了Impala连接信息,并创建了Impala JDBC包装器。然后,我们执行了SHOW CREATE TABLE语句,并将结果写入DataFrame中。接着,我们从DataFrame中获取CREATE TABLE语句,并将其写入文件。最后,我们关闭了Spark上下文。

4、spark 操作impala sql 的create table语句的样例代码

以下是使用Java语言操作Impala SQL的CREATE TABLE语句的Spark API的示例代码:

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.impala.ImpalaJDBCWrapper;

public class ImpalaCreateTableExample {

    public static void main(String[] args) {

        // 创建Spark配置
        SparkConf conf = new SparkConf().setAppName("ImpalaCreateTableExample");

        // 创建Spark上下文
        SparkContext sc = new SparkContext(conf);

        // 创建SQL上下文
        SQLContext sqlContext = new SQLContext(sc);

        // 设置Impala连接信息
        String impalaHost = "localhost";
        String impalaPort = "21050";
        String impalaDatabase = "test";
        String impalaUser = "user";
        String impalaPassword = "password";

        // 创建Impala JDBC包装器
        ImpalaJDBCWrapper impalaJDBCWrapper = new ImpalaJDBCWrapper(impalaHost, impalaPort, impalaDatabase,
                impalaUser, impalaPassword);

        // 执行CREATE TABLE语句
        String sql = "CREATE TABLE test_table (col1 INT, col2 STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ','";
        sqlContext.sql(sql);

        // 读取数据并写入Impala表
        String filePath = "/path/to/data.csv";
        sqlContext.read().format("csv")
                .option("header", "true")
                .option("inferSchema", "true")
                .option("delimiter", ",")
                .load(filePath)
                .write().format("jdbc")
                .option("url", impalaJDBCWrapper.getConnectionString())
                .option("dbtable", "test_table")
                .option("user", impalaJDBCWrapper.getUser())
                .option("password", impalaJDBCWrapper.getPassword())
                .mode(SaveMode.Overwrite)
                .save();

        // 关闭Spark上下文
        sc.stop();
    }
}

在上面的示例代码中,我们首先创建了Spark配置和Spark上下文,然后创建了SQL上下文。接下来,我们设置了Impala连接信息,并创建了Impala JDBC包装器。然后,我们执行了CREATE TABLE语句创建Impala表。接着,我们读取数据并将其写入Impala表。最后,我们关闭了Spark上下文。

5、spark 操作impala sql 的set REQUEST_POOL=newsales2; select * from 语句的样例代码

以下是使用Java语言操作Impala SQL的SET REQUEST_POOL和SELECT * FROM语句的Spark API的示例代码:

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.impala.ImpalaJDBCWrapper;

public class ImpalaSetRequestPoolExample {

    public static void main(String[] args) {

        // 创建Spark配置
        SparkConf conf = new SparkConf().setAppName("ImpalaSetRequestPoolExample");

        // 创建Spark上下文
        SparkContext sc = new SparkContext(conf);

        // 创建SQL上下文
        SQLContext sqlContext = new SQLContext(sc);

        // 设置Impala连接信息
        String impalaHost = "localhost";
        String impalaPort = "21050";
        String impalaDatabase = "test";
        String impalaUser = "user";
        String impalaPassword = "password";

        // 创建Impala JDBC包装器
        ImpalaJDBCWrapper impalaJDBCWrapper = new ImpalaJDBCWrapper(impalaHost, impalaPort, impalaDatabase,
                impalaUser, impalaPassword);

        // 设置请求池
        String requestPool = "newsales2";
        String setSql = "SET REQUEST_POOL=" + requestPool;
        sqlContext.sql(setSql);

        // 执行SELECT语句
        String selectSql = "SELECT * FROM test_table";
        DataFrame df = sqlContext.read().format("jdbc")
                .option("url", impalaJDBCWrapper.getConnectionString())
                .option("query", selectSql)
                .option("user", impalaJDBCWrapper.getUser())
                .option("password", impalaJDBCWrapper.getPassword())
                .load();

        // 将结果写入Impala表
        df.write().format("jdbc")
                .option("url", impalaJDBCWrapper.getConnectionString())
                .option("dbtable", "result_table")
                .option("user", impalaJDBCWrapper.getUser())
                .option("password", impalaJDBCWrapper.getPassword())
                .mode(SaveMode.Overwrite)
                .save();

        // 关闭Spark上下文
        sc.stop();
    }
}

在上面的示例代码中,我们首先创建了Spark配置和Spark上下文,然后创建了SQL上下文。接下来,我们设置了Impala连接信息,并创建了Impala JDBC包装器。然后,我们使用SET REQUEST_POOL语句设置请求池。接着,我们执行了SELECT * FROM语句,并将结果写入Impala表。最后,我们关闭了Spark上下文。

6、spark 操作impala sql 的select count(1) from 语句的样例代码

以下是使用Java语言操作Impala SQL的SELECT COUNT(1) FROM语句的Spark API的示例代码:

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.impala.ImpalaJDBCWrapper;

public class ImpalaSelectCountExample {

    public static void main(String[] args) {

        // 创建Spark配置
        SparkConf conf = new SparkConf().setAppName("ImpalaSelectCountExample");

        // 创建Spark上下文
        SparkContext sc = new SparkContext(conf);

        // 创建SQL上下文
        SQLContext sqlContext = new SQLContext(sc);

        // 设置Impala连接信息
        String impalaHost = "localhost";
        String impalaPort = "21050";
        String impalaDatabase = "test";
        String impalaUser = "user";
        String impalaPassword = "password";

        // 创建Impala JDBC包装器
        ImpalaJDBCWrapper impalaJDBCWrapper = new ImpalaJDBCWrapper(impalaHost, impalaPort, impalaDatabase,
                impalaUser, impalaPassword);

        // 执行SELECT COUNT(1)语句
        String sql = "SELECT COUNT(1) FROM test_table";
        DataFrame df = sqlContext.read().format("jdbc")
                .option("url", impalaJDBCWrapper.getConnectionString())
                .option("query", sql)
                .option("user", impalaJDBCWrapper.getUser())
                .option("password", impalaJDBCWrapper.getPassword())
                .load();

        // 获取计数结果
        long count = df.collectAsList().get(0).getLong(0);

        // 输出计数结果
        System.out.println("Count: " + count);

        // 关闭Spark上下文
        sc.stop();
    }
}

在上面的示例代码中,我们首先创建了Spark配置和Spark上下文,然后创建了SQL上下文。接下来,我们设置了Impala连接信息,并创建了Impala JDBC包装器。然后,我们执行了SELECT COUNT(1)语句并将结果写入DataFrame中。接着,我们从DataFrame中获取计数结果,并将其输出。最后,我们关闭了Spark上下文。

7、依赖包

org.apache.spark.sql.impala.ImpalaJDBCWrapper是Spark SQL中Impala JDBC包装器的类名,它不是独立的依赖包。实际上,它是由Spark SQL的spark-sql_2.x依赖库提供的。

因此,要在Java项目中使用org.apache.spark.sql.impala.ImpalaJDBCWrapper,你需要将以下依赖项添加到你的项目中:

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-sql_${scala.version}</artifactId>
    <version>${spark.version}</version>
</dependency>

在上面的依赖项中, s c a l a . v e r s i o n 和 {scala.version}和 scala.version{spark.version}分别是Scala版本和Spark版本的占位符,你需要将它们替换为你实际使用的版本号。

好的,关于使用Java API操作Impala以及Cloudera Manager API操作Yarn/Impala队列资源,我可以给您一些指导。 首先,对于ImpalaJava API操作,可以使用ImpalaJDBCConnector库来实现。这个库提供了一个JDBC驱动程序,使得您可以使用Java来连接Impala,并执行SQL查询。这个库可以在Maven中央仓库中找到。以下是一个使用ImpalaJDBCConnector库的示例代码: ```java Class.forName("com.cloudera.impala.jdbc41.Driver"); Connection conn = DriverManager.getConnection("jdbc:impala://localhost:21050/default", "", ""); Statement stmt = conn.createStatement(); ResultSet rs = stmt.executeQuery("SELECT COUNT(*) FROM my_table"); while (rs.next()) { System.out.println("Count: " + rs.getInt(1)); } ``` 对于Cloudera Manager API操作Yarn/Impala队列资源,您可以使用Cloudera Manager的Java API来实现。Cloudera Manager提供了一个REST API,可以使用Java来调用。以下是一个使用Cloudera Manager Java API的示例代码: ```java ApiRootResource root = new ClouderaManagerClientBuilder() .withHost("localhost") .withUsernamePassword("admin", "admin") .build().getRootV19(); ApiClusterTemplateResourceV19 clusterTemplateResource = root.getClusterTemplateResource(); ApiClusterTemplateList clusterTemplateList = clusterTemplateResource.readClusterTemplates(DataView.SUMMARY); for (ApiClusterTemplate template : clusterTemplateList) { System.out.println(template.getName()); } ``` 以上是一些示例代码,您可以根据具体场景进行调整和修改。希望能对您有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值