Python-Matplotlib折线图绘制----y轴刻度不同 <lpliner>

本文介绍了如何使用Python的Matplotlib库在同一个图表上绘制多组数据,并使每组数据的y轴刻度不同。通过代码示例展示了数据准备和效果演示,旨在帮助读者理解和应用这种数据可视化技巧。
摘要由CSDN通过智能技术生成

背景

  • 之前记录过关于直线图绘制函数的封装,现在补充剩余的部分,多种数据绘制在同一表格中,且每组数据的刻度不同

目录

  • Code
  • 示例
  • 总结

Code

import random
from matplotlib import pyplot as plt
from mpl_toolkits.axisartist.parasite_axes import HostAxes, ParasiteAxes


def plt_price(x: dict, 
              y: Union[dict, List[dict]], 
              size: Tuple[int, int],
              offset: int = 50):
    """
    根据传入的数据进行折线图的绘制
    :param x: x轴坐标数据
        x = dict(
                data=<List>,    # 数据集
                name=<xName>    # x轴名称
                xlim=(1, 100)   # x轴数据范围
                )
    :param y: y轴需要绘制的数据
        y = dict(
                data=<List>,    # 数据集
                name=<yName>,   # y轴名称
                line="r-",      # 绘制线条及颜色,r:red, -:直线,其余样式自行网查
                label=<Label>,  # 表格上提示部分的线段名称
                title=<Title>   # 表格title
                )
    :param size: 画布大小
        size = (8, 4)           # width, height
    :param offset: 相邻两个y轴之间的间距
    :return: None
    """
    
    # 默认颜色,用于当输入数据未确定color时,选择随机color
    base_color = ["black", "red", "blue", "pink", "yellow"]
    
    # 创建figure,并设置大小为size
    figure = plt.figure(figsize=size)
    
    # 创建Axes层上的主轴,后续寄生轴ParasiteAxes操作都在此基础上操作
    # 而此Axes层是基于之前创建的Figure层之上
    # 第二个参数说明,分别对应:left, bottom, width, height
    axes_host = HostAxes(figure, [0.05, 0.1, 0.8, 0.9])
    
    # 获取主轴对应的数据data和标签label
    x_data = x["data"]
    x_label = x.get("label", "")
    
    # 在主轴上设置x标签
  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值