Quantum Tensor Networks in a Nutshell

本文深入探讨量子张量网络,从量子基础出发,详细介绍了张量到网络的转换、张量网络的图形表示,包括弯曲交叉线、图解奇异值分解、矩阵乘积态等内容。还讨论了张量网络在量子计算中的应用,如量子线路和量子纠缠,并展示了如何利用张量网络进行计数问题的解决。文章适合有一定量子理论、线性代数和张量知识的读者。
摘要由CSDN通过智能技术生成

目录

1. quantum Legos
2. From Tensors to Networks
3. Bending and Crossing Wires
4. Diagrammatic SVD
5. Matrix Product States
6. Counting by Tensor Contrsction
  Counting Boolean Formula Solutions
  Counting Graph Colorings
7. Frontiers in Tensor Networks
  Acknowledgments
  Regerences

A.Tensors and Tensor Products

1、量子基础

  • 张量是一个数学概念,它是多线性映射的概括总结和推广,即:多变量函数关于每一个变量都是线性的。
  • 张量网络是由张量缩并结合起来的张量的可数集。
    张量网络以一种直观的图形语言展现出来。量子线路是一种特殊的张量网络,由特定类型的张量排列形成。
  • 张量网络的著名的应用是:1D Matrix Product States(MPS)、Tensor Trains(TT)、Tree Tensor Networks(TTN)、the Multi-scale Entanglement Renormalization Ansatz(MERA)、Projected Entangled Pair States(PEPS)
  • 利用简单、常规结构的张量网络去近似一个复杂量子态的方法,本质上应用了可以保留量子态最重要特性的有耗数据压缩
  • 下图表示了张量网络是如何以多种多样的方式表达或者近似一个量子态 ∣ ψ ⟩ \vert\psi\rangle ψ:

在这里插入图片描述

  • 本文作者假设读者已经知晓:量子理论、线性代数、张量

2、从张量到网络

1、画张量
在张量图示中,一个张良是一个带有标签的图形,方形或者三角形,带有0条或者多条输出边,指向上;带有0条或者多条输入边,指向下。单独的边分别对应上下指标。表示边的线如果必要的话标记上表示的指标或者它们对应的向量空间, ( 0 , 0 ) (0,0) (0,0)阶的张量没有任何边,表示一个复数。例如,图(a)表示张量 ψ i \psi^i ψi有一个上指标,是一个向量。图(b)表示张量 A    k j A_{~~k}^j A  kj是一个矩阵,图©表示张量 T j k i T^i_{jk} Tjki.在这里插入图片描述
2、张量并列
当有两个或者更多不连接的张量出现在同一个图里,它们通过张量积相乘,在抽象索引表示法中,张量积符号省略,张量可以很自由的穿过彼此移动,有时称为平面变形。在这里插入图片描述
上图所对应的方程如下: ( I ⊗ B ) ( A ⊗ I ) = ( A ⊗ B ) = ( A ⊗ I ) ( I ⊗ B ) (I\otimes B)(A\otimes I)=(A\otimes B)=(A\otimes I)(I\otimes B) (IB)(AI)=(AB)=(AI)(IB).其中,也用线来表示恒等张量 I I I.线允许穿过张量符号和其他线只要线的最后指向不变即可。下图没有对线标记,如果标记的话,可以记为: Q b d e g R a c f . Q^{deg}_bR^f_{ac}. QbdegRacf.

在这里插入图片描述

3、连接线
利用一条边连接两个张量的边表示对应指标的缩并(求和)。

在这里插入图片描述
图(a)表示一个矩阵乘以一个向量得到一个向量,图(a)等价于下述表达: A    i j ψ i = ϕ j A^j_{~~i}\psi^i=\phi^j A  ijψi=ϕj注意到,表示指标 i i i的线完全连接起来了,因此对应的指标被缩并了。使用 E i n s t e i n   s u m m a t i o n   c o n v e n t i o n Einstein~summation~convention Einstein summation convention,任意的指标在同一项里出现两次(上下指标各一次)就缩并。图(b)缩并两个3阶张量的指标,等价于: Γ    j k i Δ l j k = B    l i . \Gamma^i_{~~jk}\Delta^{jk}_l=B^i_{~~l}. Γ  jkiΔljk=B  li.

两个及其以上的张量在一个图里形成一个张量网络,如果在这个张量网络中任何一个张量都没有边我们称之为充分缩并:计算得到一个复数,是一个标量。

4、连接到量子计算符号
张量是多重线性映射,可以在任意给定的基下展开,按照它的组成部分表达出来,在量子信息科学里,每一个 H i l b e r t   s p a c e Hilbert ~space Hilbert space有一组计算基 { ∣ k ⟩ } k \left\{\vert k\rangle\right\}_k { k}k并且张量可以在这组基下展开。 T = ∑ i j k T    j k i ∣ i ⟩ ⟨ j k ∣ . T=\sum_{ijk}T^i_{~~jk}\vert i\rangle\langle jk\vert. T=ijkT  jkiijk.其中 T    j k i T^i_{~~jk} T  jki是在计算基下张量的组合部分。

例1( ϵ \epsilon ϵ张量)
一个张量是完全反对称的,如果交换任意指标对它的符号就改变: A i j = − A j i A_{ij}=-A_{ji} Aij=Aji, ϵ \epsilon ϵ张量用来表达这种完全反对称 L e v i − C i v i t a Levi-Civita LeviCivita记号,在2维的情形表达如下: ϵ 00 = ϵ 11 = 0 ,             ϵ 01 = − ϵ 10 = 1 \epsilon_{00}=\epsilon_{11}=0,~~~~~~~~~~~\epsilon_{01}=-\epsilon_{10}=1 ϵ00=ϵ11=0,           ϵ01=ϵ10=1 ϵ \epsilon ϵ张量可以用来计算矩阵的行列式,在2维的情形,有: d e t ( S ) = ϵ i j S   0 i S   1 j . det(S)=\epsilon_{ij}S^i_{~0}S^j_{~1}. det(S)=ϵijS 0iS 1j.利用上式,可以得到:
   在这里插入图片描述
对应的方程是: ϵ i j S   m i S   n j = d e t ( S ) ϵ m n . \epsilon_{ij}S^i_{~m}S^j_{~n}=det(S)\epsilon_{mn}. ϵijS miS nj=det(S)ϵmn.按照量子力学, ϵ \epsilon ϵ对应一个 2 − q u b i t 2-qubit 2qubit纯态: 1 2 ∣ ϵ ⟩ = 1 2 ( ∣ 01 ⟩ − ∣ 10 ⟩ ) . \frac{1}{\sqrt2}\vert\epsilon\rangle=\frac{1}{\sqrt2}(\vert 01\rangle-\vert 10\rangle). 2 1ϵ=2 1(0110).这个量子态在任意一个形为 U ⊗ U U\otimes U UU的变换下是不变的,(其中 U U U 2 × 2 2\times2 2×2酉矩阵),仅仅相差一个全局相位因子。

例2(并发和纠缠)
给定一个 2 − q u b i t 2-qubit 2qubit纯量子态 ∣ ψ ⟩ \vert \psi\rangle ψ,它的并发( c o n c u r r e n c e concurrence concurrence) C ( ψ ) = ∣ C ′ ( ψ ) ∣ C(\psi)=\vert C\prime (\psi)\vert C(ψ)=C(ψ)是下列张量网络表达的绝对值

在这里插入图片描述
其中 ψ ˉ \bar\psi ψˉ ψ \psi ψ在计算基下的复共轭。并发是一种纠缠单配性,是一种从态到非负正实数的函数,测量态是如何纠缠的。 ∣ ψ ⟩ \vert\psi\rangle ψ是纠缠的当且仅当并发是大于等于0的数。现在考虑将任意一个酉操作作用在 ∣ ψ ⟩ \vert\psi\rangle ψ上,即: C ( ( U 1 ⊗ U 2 ) ∣ ψ ⟩ ) = C ( ψ ) ∣ d e t ( U 1 ) d e t ( U 2 ) ∣ . C((U_1\otimes U_2)\vert\psi\rangle)=C(\psi)\vert det(U_1) det(U_2)\vert. C((U1U2)ψ)=C(ψ)det(U1)det(U2).因为 ∣ d e t ( U 1 ) ∣ = ∣ d e t ( U 2 ) ∣ = 1 \vert det(U_1)\vert=\vert det(U_2)\vert=1 det(U1)=det(U2)=1,这就得到,并发在局部酉变换下是不变量。因为局部酉变换并不能改变量子态的纠缠数量。更复杂的不变量可以被如下张量网络表示

在这里插入图片描述
如果 ∣ ψ ⟩ \vert\psi\rangle ψ是一个 3 − q u b i t 3-qubit 3qubit的量子态, τ ( ψ ) = 2 ∣ τ ′ ( ψ ) ∣ \tau(\psi)=2\vert\tau^\prime(\psi)\vert τ(ψ)=2τ(ψ)表示纠缠不变性
不使用 ϵ \epsilon ϵ张量,也可以构造不变性,例如 K e m p e   i n v a r i a n t Kempe~invariant Kempe invariant 3 − q u b i t 3-qubit 3qubit纠缠不变性: K ( ψ ) = ψ i j k ψ ˉ i l m ψ n l o ψ ˉ p j o ψ p q m ψ ˉ n q k . K(\psi)=\psi^{ijk}\bar\psi_{ilm}\psi^{nlo}\bar\psi_{pjo}\psi^{pqm}\bar\psi_{nqk}. K(ψ)=ψijkψˉilmψnloψˉpjoψpqmψˉnqk.
画出等价的张量网络。

例3(量子线路)
量子线路是一种特殊的张量网络子类,它被广泛的应用在量子信息领域。在量子线路图中每一条水平线表示一个与量子子系统(典型的单比特)关联的希尔伯特空间,张量附着在线路上,表示作用在这些子系统上的酉矩阵,被称作量子门,另外的记号用来表示测

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值