给定两个整数数组 inorder
和 postorder
,其中 inorder
是二叉树的中序遍历, postorder
是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。
示例 1:
输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3] 输出:[3,9,20,null,null,15,7]
示例 2:
输入:inorder = [-1], postorder = [-1] 输出:[-1]
提示:
1 <= inorder.length <= 3000
postorder.length == inorder.length
-3000 <= inorder[i], postorder[i] <= 3000
inorder
和postorder
都由 不同 的值组成postorder
中每一个值都在inorder
中inorder
保证是树的中序遍历postorder
保证是树的后序遍历
解题思路
-
构建索引映射:使用哈希表存储中序遍历中每个值对应的索引,以便在构建树时快速查找。
-
递归构建树:
- 确定根节点:后序遍历的最后一个元素是树的根节点。
- 划分左右子树:根据中序遍历中的根节点索引,将中序遍历数组划分为左子树和右子树的部分。
- 递归构建左右子树:分别递归处理左子树和右子树的部分,构建树的左右子树。
代码和注释
class Solution {
// 用于存储中序遍历中每个节点值的索引位置
private Map<Integer, Integer> map;
public TreeNode buildTree(int[] inorder, int[] postorder) {
int n = inorder.length;
// 初始化映射
map = new HashMap<Integer, Integer>();
// 填充映射,记录每个中序遍历节点值的索引
for (int i = 0; i < n; i++) {
map.put(inorder[i], i);
}
// 调用递归方法构建树
return mybuildTree(inorder, postorder, 0, n - 1, 0, n - 1);
}
// 递归构建树的方法
public TreeNode mybuildTree(int[] inorder, int[] postorder, int inorder_left, int inorder_right, int postorder_left, int postorder_right) {
// 基本情况:如果索引范围无效,返回 null
if (inorder_left > inorder_right) {
return null;
}
// 从后序遍历中获取当前子树的根节点(后序遍历的最后一个元素)
int postorder_root = postorder_right;
// 获取根节点在中序遍历中的索引位置
int inorder_root = map.get(postorder[postorder_root]);
// 计算左子树的大小
int size = inorder_root - inorder_left;
// 创建当前子树的根节点
TreeNode root = new TreeNode(inorder[inorder_root]);
// 递归构建左子树
root.left = mybuildTree(inorder, postorder, inorder_left, inorder_root - 1, postorder_left, postorder_left + size - 1);
// 递归构建右子树
root.right = mybuildTree(inorder, postorder, inorder_root + 1, inorder_right, postorder_left + size, postorder_right - 1);
// 返回当前子树的根节点
return root;
}
}