7/2 项目知识点总结

从 np.arange(5) 产生一个标准分布、size为 3、没有重复替换的随机采样:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

fpr,tpr,thresholds=roc_curve(y_test,y[:,1])fpr,tpr,thresholds=roc_curve(y_test,y[:,1])

#coding:utf-8
print(__doc__)

import numpy as np
from scipy import interp
import matplotlib.pyplot as plt

from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from sklearn.cross_validation import StratifiedKFold

###############################################################################
# Data IO and generation,导入iris数据,做数据准备

# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
X, y = X[y != 2], y[y != 2]
n_samples, n_features = X.shape

# Add noisy features
random_state = np.random.RandomState(0)
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

###############################################################################
# Classification and ROC analysis
#分类,做ROC分析

# Run classifier with cross-validation and plot ROC curves
#使用6折交叉验证,并且画ROC曲线
cv = StratifiedKFold(y, n_folds=6)
classifier = svm.SVC(kernel='linear', probability=True,
                     random_state=random_state)

mean_tpr = 0.0
mean_fpr = np.linspace(0, 1, 100)
all_tpr = []

for i, (train, test) in enumerate(cv):
    print test
    #通过训练数据,使用svm线性核建立模型,并对测试集进行测试,求出预测得分
    probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test])
    # Compute ROC curve and area the curve
    #通过roc_curve()函数,求出fpr和tpr,以及阈值
    fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1])
    mean_tpr += interp(mean_fpr, fpr, tpr)            #对mean_tpr在mean_fpr处进行插值,通过scipy包调用interp()函数
    mean_tpr[0] = 0.0                                 #初始处为0
    roc_auc = auc(fpr, tpr)
    #画图,只需要plt.plot(fpr,tpr),变量roc_auc只是记录auc的值,通过auc()函数能计算出来
    plt.plot(fpr, tpr, lw=1, label='ROC fold %d (area = %0.2f)' % (i, roc_auc))

#画对角线
plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck')

mean_tpr /= len(cv)                     #在mean_fpr100个点,每个点处插值插值多次取平均
mean_tpr[-1] = 1.0                         #坐标最后一个点为(1,1)
mean_auc = auc(mean_fpr, mean_tpr)        #计算平均AUC值
#画平均ROC曲线
#print mean_fpr,len(mean_fpr)
#print mean_tpr
plt.plot(mean_fpr, mean_tpr, 'k--',
         label='Mean ROC (area = %0.2f)' % mean_auc, lw=2)

plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()

Python数据可视化—seaborn简介和实例

Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图。这里实例采用的数据集都是seaborn提供的几个经典数据集,dataset文件可见于Github。本博客只总结了一些,方便博主自己查询,详细介绍可以看seaborn官方APIexample gallery,官方文档还是写的很好的。

1  set_style( )  set( )

set_style( )是用来设置主题的,Seaborn有五个预设好的主题: darkgrid , whitegrid , dark , white ,和 ticks  默认: darkgrid


     
     
  1. import matplotlib.pyplot as plt
  2. import seaborn as sns
  3. sns.set_style( “whitegrid”)
  4. plt.plot(np.arange( 10))
  5. plt.show()



set( )通过设置参数可以用来设置背景,调色板等,更加常用。


     
     
  1. import seaborn as sns
  2. import matplotlib.pyplot as plt
  3. sns.set(style= "white", palette= "muted", color_codes= True) #set( )设置主题,调色板更常用
  4. plt.plot(np.arange( 10))
  5. plt.show()

2  distplot( )  kdeplot( )

distplot( )为hist加强版,kdeplot( )为密度曲线图 

     
     
  1. import matplotlib.pyplot as plt
  2. import seaborn as sns
  3. df_iris = pd.read_csv( '../input/iris.csv')
  4. fig, axes = plt.subplots( 1, 2)
  5. sns.distplot(df_iris[ 'petal length'], ax = axes[ 0], kde = True, rug = True) # kde 密度曲线 rug 边际毛毯
  6. sns.kdeplot(df_iris[ 'petal length'], ax = axes[ 1], shade= True) # shade 阴影
  7. plt.show()

       
       
  1. import numpy as np
  2. import seaborn as sns
  3. import matplotlib.pyplot as plt
  4. sns.set( palette= “muted”, color_codes= True)
  5. rs = np.random.RandomState( 10)
  6. d = rs.normal(size= 100)
  7. f, axes = plt.subplots( 2, 2, figsize=( 7, 7), sharex= True)
  8. sns.distplot(d, kde= False, color= “b”, ax=axes[ 0, 0])
  9. sns.distplot(d, hist= False, rug= True, color= “r”, ax=axes[ 0, 1])
  10. sns.distplot(d, hist= False, color= “g”, kde_kws={ “shade”: True}, ax=axes[ 1, 0])
  11. sns.distplot(d, color= “m”, ax=axes[ 1, 1])
  12. plt.show()

3  箱型图 boxplot( )


     
     
  1. import matplotlib.pyplot as plt
  2. import seaborn as sns
  3. df_iris = pd.read_csv( '../input/iris.csv')
  4. sns.boxplot(x = df_iris[ 'class'],y = df_iris[ 'sepal width'])
  5. plt.show()



     
     
  1. import matplotlib.pyplot as plt
  2. import seaborn as sns
  3. tips = pd.read_csv( '../input/tips.csv')
  4. sns.set(style= "ticks") #设置主题
  5. sns.boxplot(x= "day", y= "total_bill", hue= "sex", data=tips, palette= "PRGn") #palette 调色板
  6. plt.show()


4  联合分布jointplot( )


      
      
  1. tips = pd.read_csv( ‘../input/tips.csv’) #右上角显示相关系数
  2. sns.jointplot( “total_bill”, “tip”, tips)
  3. plt.show()


       
       
  1. tips = pd.read_csv( ‘../input/tips.csv’)
  2. sns.jointplot( “total_bill”, “tip”, tips, kind= ‘reg’)
  3. plt.show()


5  热点图heatmap( )


     
     
  1. import matplotlib.pyplot as plt
  2. import seaborn as sns
  3. data = pd.read_csv( "../input/car_crashes.csv")
  4. data = data.corr()
  5. sns.heatmap(data)
  6. plt.show()


6  pairplot( )


     
     
  1. import matplotlib.pyplot as plt
  2. import seaborn as sns
  3. data = pd.read_csv( "../input/iris.csv")
  4. sns.set() #使用默认配色
  5. sns.pairplot(data,hue= "class") #hue 选择分类列
  6. plt.show()



     
     
  1. import seaborn as sns
  2. import matplotlib.pyplot as plt
  3. iris = pd.read_csv( '../input/iris.csv')
  4. sns.pairplot(iris, vars=[ "sepal width", "sepal length"],hue= 'class',palette= "husl")
  5. plt.show()

7  FacetGrid( )


     
     
  1. import seaborn as sns
  2. import matplotlib.pyplot as plt
  3. tips = pd.read_csv( '../input/tips.csv')
  4. g = sns.FacetGrid(tips, col= "time", row= "smoker")
  5. g = g.map(plt.hist, "total_bill", color= "r")
  6. plt.show()


参考链接:




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值