机器学习
wuhuimin521
这个作者很懒,什么都没留下…
展开
-
机器学习之梯度下降
(1)批量梯度下降—最小化所有训练样本的损失函数(对全部训练数据求得误差后再对参数进行更新),使得最终求解的是全局的最优解,即求解的参数是使得风险函数最小。批梯度下降类似于在山的某一点环顾四周,计算出下降最快的方向(多维),然后踏出一步,这属于一次迭代。批梯度下降一次迭代会更新所有theta,每次更新都是向着最陡的方向前进。(2)随机梯度下降—最小化每条样本...原创 2018-06-14 13:23:05 · 264 阅读 · 0 评论 -
使用K-Means算法检测DGA域名
在学习机器学习算法的过程中,我们经常需要数据来验证算法,调试参数。但是找到一组十分合适某种特定算法类型的数据样本却不那么容易。还好numpy, scikit-learn都提供了随机数据生成的功能,我们可以自己生成适合某一种模型的数据,用随机数据来做清洗,归一化,转换,然后选择模型与算法做拟合和预测。下面对scikit-learn和numpy生成数据样本的方法做一个总结。1. numpy随机数据...原创 2018-08-24 10:40:10 · 3054 阅读 · 0 评论 -
机器学习之 决策树
一、决策树1.概念决策树在现实生活中应用广泛,也非常容易理解,通过构建一颗决策树,只要根据树的的判断条件不断地进行下去,最终就会返回一个结果。例如下图所示。决策树天然地可以解决多分类问题,同时也可以应用于回归问题中。现在先通过sklearn中封装的决策树方法对数据进行分类,来学习决策树。[html] view plain copy print?import&nbs...原创 2018-06-19 20:52:55 · 1488 阅读 · 0 评论 -
机器学习之SVM
svm hard margin svm soft margin svm c 平衡重要程度,可用网格搜索 与knn一样,svm 需要对数据进行标准化处理。 sklearn 中核函数不是svm 特有的 一、支持向量机svm1.概念svm即support vector machine...原创 2018-06-18 22:21:58 · 1970 阅读 · 0 评论 -
机器学习之评价分类结果
评价结果用精准率和召回率,为了平衡两者关系,引入F1,roc 曲线面积越大评价结果越好。原创 2018-06-17 15:54:31 · 564 阅读 · 0 评论 -
机器学习之逻辑回归
这一章是实现逻辑回归,刚开始用逻辑回归实现二分类,通过OVO,ovr实现多分类。原创 2018-06-17 15:45:32 · 174 阅读 · 0 评论 -
机器学习之多项式回归和模型泛化
https://img-blog.csdn.net/201806161752047?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3d1aHVpbWluNTIx/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70” alt=...原创 2018-06-16 17:58:56 · 283 阅读 · 0 评论 -
一个框架解决几乎所有机器学习问题(转)
文章讲的非常好! 上周一个叫 Abhishek Thakur 的数据科学家,在他的 Linkedin 发表了一篇文章 Approaching (Almost) Any Machine Learning Problem,介绍他建立的一个自动的机器学习框架,几乎可以解决任何机器学习问题,项目很快也会发布出来。这篇文章迅速火遍 Kaggle,他参加过100多个数据科学...转载 2018-08-29 18:08:51 · 261 阅读 · 0 评论