01, 互联网运营岗的SQL学习路线
互联网运用最多的是数据库是 MySQL, 针对 MySQL 已经有太多的资料了。前两天我还转载了一个 MySQL 的入门版本系列:
学完这些要多久,快点一个礼拜,慢点一个月,总行了。拿市面上初级数据分析师的职位要求来说,其实技术方面,考察的就是 SQL
只要你不嫌弃,一年内拿下数据分析师不是什么难事。我们仔细看这份 JD,几个优先项可以不考虑,重点就是 SQL 和数据敏感度。SQL 部分不会用到深奥的技术,比如性能优化,ETL,或者维度建模等,就是平常的函数和存储过程的使用,能准确拉到数据就满足要求了。
数据分析关键的步骤不仅仅在于技术本身,而是对整个业务的理解深浅。
举两个例子:
1)双十一大促中,我们会统计哪个渠道来的订单最多,比如手机,网页还是 iPad? 如果是手机端来的订单多,且利润高,毫不犹豫的应该提出加强手机端的应用开发和促销手段。数据分析在这里起到了运营手段改进的监督作用
2)在线下超市,分析师通过分析购物篮的货品,会得出啤酒和尿布一起出现的概率更高,那么将其放在相邻的上下两层更有助于促销。这里数据分析师就在帮公司赚更多利润了。
第一种分析手段更多是建立在统计学的基础上,而第二种则是要运用数据挖掘算法了。为什么说大数据技术也是今后必备手段,就是因为线上购物的体量已经超越线下,成为海量数据,仅凭单机手段无法做出统计和预测,才需要使用多台计算机联合处理数据分析等任务。
为了解释数据分析的简单本质,我在今天的第二栏特转载了一场实战的数据分析应用文。技术发挥在场景中才能走的更远。
02,ERP集成与数据中台策略
第二位读者的问题比较具有实战型。他的目的是要集成两个ERP系统,并最终部署一个数据中台。说实话,这是一个项目,仅凭一篇文章我是无法写出详细的每一步做法的,原谅我也只是普通人。
ERP系统的集成,是个迁移的过程,假设一方的ERP将要淘汰,而集成的这方ERP要兼容淘汰方的功能。那么我认为至少要分两期走,确保三个方面。
第一期,做数据集成。淘汰方的输入系统仍要使用,输入的数据,不仅仅在老系统存储,还要同步到集成方的存储,使用批次或者实时,看业务本身的需求。此时同步一定会有数据的失真,即完整性,一致性和安全性并无办法保障,那么每日的审核就要处理这些失真的兼容性bug,且做好集成数据与固有数据的区分。等到数据完成了三性保障,且功能上也做到了兼容淘汰方的ERP。那么就可以进入第二期。
第二期,正式切换,安排专业人员做 Support. 上线之后,进行人员培训,培养新的输入习惯和数据思维。以免因为输入方法造成的数据逻辑错误,因为此时,你已经无法区别是哪方的数据带来的bug了。
第三期,是做数据中台。其实数据中台的概念比较新,是近期大热门,但不建议为了热门而赶热门,ERP本身的管理思想就很前卫,没有彻底发挥ERP的效用,转而用中台策略,反而会造成资源的浪费。当然,领导说要上,我们肯定要想法子上。我写过两篇中台的文章,可以参考:
数据中台的概念,由阿里提出,2015年就在做了,阿里的体量做中台比较符合应用,众所周知,船小好调头。就是这个意思!
推荐这本书:
看前四章的思想就够了,后面偏技术部分,稍微了解下。互联网技术栈和传统企业不是很切合。
以上是我的一点看法,未必正确,还是需要你们多读书,多搜集互联网的分享,找到适合自己的路子。祝大家都学有所成,升官发财!
End
往期精彩: