深度优先搜索和广度优先搜索

参考:http://www.cnblogs.com/skywang12345/p/3711483.html

一、深度优先搜索

图的深度优先搜索(Depth First Search),和树的先序遍历比较类似。

它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。 若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。

显然,深度优先搜索是一个递归的过程。

二、广度优先搜索

广度优先搜索算法(Breadth First Search),又称为”宽度优先搜索”或”横向优先搜索”,简称BFS。

它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2…的顶点。

三、Java代码实现

/*
 * @date:2016-10-13
 * @autor:crystal
 * @description: DFS & BFS
 */
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;

public class DepthFirstSearch {

    private char[] vertexs;//顶点的字符集合
    private boolean[][] edges;  //存储边关系的布尔矩阵

    public static void main(String[] args){
        char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        char[][] edges = new char[][]{
                {'A', 'C'}, 
                {'A', 'D'}, 
                {'A', 'F'}, 
                {'B', 'C'}, 
                {'C', 'D'}, 
                {'E', 'G'}, 
                {'F', 'G'}};
        DepthFirstSearch dfs = new DepthFirstSearch(vertexs, edges);
        dfs.DFS();
        System.out.println();
        dfs.BFS();


    }

    //初始化操作,根据输入的顶点集合和边的关系,根据字符对数组初始化布尔矩阵
    private void initial(char[] vertexs, char[][] edges){
        int len = vertexs.length;
        boolean[][] newEdges = new boolean[len][len];
        ArrayList<Character> al = new ArrayList<Character>(len);
                for(int i = 0; i < len; i++){
                    al.add(vertexs[i]);
                }
        for(int i = 0; i < edges.length; i++){
            int index1 = al.indexOf(edges[i][0]);
            int index2 = al.indexOf(edges[i][1]);
            newEdges[index1][index2] = true;
            newEdges[index2][index1] = true;  //如果是有向图删除这一行
        }
        this.edges = newEdges;
        this.vertexs = vertexs;


    }
    DepthFirstSearch(char[] vertexs, char[][] edgs){

        initial(vertexs, edgs);

    }

    //根据节点v找到相邻的第一个节点
    private  int firstIndex(int v){
        if(v < 0 || v > (vertexs.length -1))
            return -1;

        for(int i  = 0; i < vertexs.length; i++)
            if(edges[v][i])
                return i;
        return -1;
    }

    //由节点v找到相邻节点w的下一个相邻节点
    private int nextIndex(int v, int w){
        if(v < 0 || v > (vertexs.length -1) || w < 0 || w > (vertexs.length -1))
            return -1;

        for(int i = w+1; i < vertexs.length; i++)
            if(edges[v][i])
                return i;
        return -1;
    }

    //递归实现深度优先搜索,私有实现
    private void DFS(int i, boolean[] visited){
        visited[i] = true;
        System.out.print(vertexs[i]);
        for(int j = firstIndex(i); j >= 0; j = nextIndex(i,j)){
            if(!visited[j])
                DFS(j, visited);
        }
    }

    //公有实现,对外提供接口
    public void DFS(){
        int len = vertexs.length;
        boolean[] visited = new boolean[len];
        for(int i = 0 ; i < len; i++)
            visited[i] = false;

        for(int i = 0; i < len; i++){
            if(!visited[i]){
                DFS(i,visited);
            }
        }
    }

    //广度优先搜索
    public void BFS()
    {
        int len = vertexs.length;
        boolean[] visited = new boolean[len];

        Queue<Integer> q = new LinkedList<Integer>(); //类似层次遍历,用队列来实现

        for(int i = 0; i < len; i++)
            visited[i] = false;

        for(int i = 0; i < len; i++){
            if(!visited[i]){
                visited[i] = true;
                System.out.print(vertexs[i]);
                q.add(i);
            }

            while(!q.isEmpty()){
                int v = q.poll();
                for(int w = firstIndex(v); w >=0; w=nextIndex(v,w)){
                    if(!visited[w]){
                        visited[w] = true;
                        System.out.print(vertexs[w]);
                        q.add(w);
                    }
                }
            }
        }

    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值