try_again_later
码龄7年
关注
提问 私信
  • 博客:666,345
    666,345
    总访问量
  • 203
    原创
  • 975,803
    排名
  • 1,045
    粉丝
  • 6
    铁粉

个人简介:在读硕士,高精度建图定位方向。 知乎专栏:《视觉、激光SLAM源码详细解析》

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-09-05
博客简介:

try_again_later的博客

查看详细资料
个人成就
  • 博客专家认证
  • 获得662次点赞
  • 内容获得183次评论
  • 获得4,135次收藏
  • 代码片获得1,208次分享
创作历程
  • 37篇
    2020年
  • 62篇
    2019年
  • 110篇
    2018年
  • 13篇
    2017年
成就勋章
TA的专栏
  • 视觉、激光SLAM
    64篇
  • C++
    66篇
  • 无人驾驶
    13篇
  • 剑指Offer
    10篇
  • 数据结构
    9篇
  • 求职指南
    19篇
  • OpenCV 3.4.1
    14篇
  • 数学建模
    5篇
  • paper reading
    4篇
  • ROS
    13篇
  • python
    1篇
  • Matlab
    2篇
  • 品味人生
    3篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

进程和线程主要区别与定义

抽象理解直接上图,CPU是工厂、电力资源是cpu 时间片、进程是车间、线程是车间工人。操作系统的资源分配与调度逻辑以多进程形式,允许多个任务同时运行;以多线程形式,允许单个任务分成不同的部分运行;提供协调机制,一方面防止进程之间和线程之间产生冲突,另一方面允许进程之间和线程之间共享资源。科学理解进程进程是程序的一次执行过程,是一个动态概念,是程序在执行过程中分配和管理资源的基本单位,每一个进程都有一个自己的地址空间,至少有 5 种基本状态,它们是:初始态,执行态,等待状态,就绪状态,终
原创
发布博客 2020.06.28 ·
698 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

《wiki官网教程》2 编写简单的服务器service和客户端 client(C++)

服务(services)是节点之间通讯的另一种方式。服务允许节点发送请求(request) 并获得一个响应(response)。之前讲的是两个节点如果要通信需要经过话题topic,一个节点需要订阅话题并sub消息,另一个节点订阅话题并发布pub消息。使用方式:rosservice list 输出可用服务的信息rosservice call 调用带参数的服务rosservice type 输出服务类型rosservice find 依
原创
发布博客 2020.06.27 ·
584 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

VS Code创建、调试ROS项目

前言:在vs code下配置ROS项目开发的环境包括catkin创建编译工作空间,创建ROS项目,调试ROS节点一、创建工作空间首先创建一个cMake工作空间,用到了catkin_make其实就是cmake …make两个步骤的缩写。$ mkdir -p ~/ros_test/src$ cd ~/ros_test/$ catkin_make注意:每次打开工作空间ros_test文件要source一下cd ~/ros_testsource devel/setup.bash除此之
原创
发布博客 2020.06.23 ·
2815 阅读 ·
6 点赞 ·
1 评论 ·
47 收藏

Ubuntu18.04配置VS Code+CMake的C++开发环境

2020-06-14首先,介绍自己电脑:Ubuntu18.04、VS Code 1.46版本文目的:为VS Code配置好C++ 开发环境,以及VS Code +CMake的配置对于C++ 工程,有四个必要的json配置文件,先ctrl+shift+p打开输入指令分别是:c_cpp_properties.json :配置项目结构,自动生成和更新,输入C/C++:Edit configurationtask.json: 构建和编译运行项目,输入Task:Configure Task,模板,Othe
原创
发布博客 2020.06.16 ·
2750 阅读 ·
8 点赞 ·
2 评论 ·
46 收藏

从头到尾配置最好用的Ubuntu18.04

​​一、重装Ubuntu系统ubuntu18.04镜像直接上图接下来到了分区界面我的120G固态硬盘模板为:选择点击“+ - Change”中的“+”:/boot:主分区,300M/:主分区,20Gswap:逻辑分区,2G/home:逻辑分区,97G除了swap的文件格式为交换空间,其余都是EXT4.大功告成。二、禁用集成显卡,只用独显我们用software-properties-gtk这个程序来安装专有的Nvidia显卡驱动。在终端里输入下面的命令打开software
原创
发布博客 2020.06.12 ·
1308 阅读 ·
2 点赞 ·
0 评论 ·
10 收藏

激光雷达点云预处理:传感器时间同步、点云去畸变

一、传感器时间同步多传感器融合过程中由于传感器之间的采集频率不同,导致无法保证传感器数据同步。这里以激光雷达为核心传感器,每次收到一次雷达数据,便以当前雷达数据采集时刻作为要插入的时间点,该时刻另一传感器IMU的数据通过插值获得。这里同样可以参考VINS里相机和IMU时间同步的函数代码getMeasurements()。主程序在front_end_flow.cpp文件中的ReadData()函...
原创
发布博客 2020.05.14 ·
10384 阅读 ·
15 点赞 ·
4 评论 ·
169 收藏

基于NDT的前端里程计框架优化

本文旨在对上一讲基于NDT的前端里程计代码解析进行框架上的优化,主要参考知乎上专栏文章《从零开始做自动驾驶定位》,在此基础上进行更加清晰的代码框架解读。首先上一篇文章有以下缺点:1、没有专门的参数配置文件.yaml2、点云滤波、匹配作为常用的操作,应该专门设置模块。3、没有内存管理:每个关键帧都存了点云,所有关键帧在内存中随着时间推移严重影响运行速度。这里考虑除了滑动窗局部地图涉及的关...
原创
发布博客 2020.04.25 ·
1320 阅读 ·
5 点赞 ·
3 评论 ·
25 收藏

基于NDT的前端里程计代码解析

本文主要对Lidar_Localization文件中的三个源文件,front_end_node.cpp、front_end.h/cpp进行详细代码解读。前端激光雷达点云里程计主要分为:点云下采样滤波、点云匹配、位姿估计、关键帧选取等步骤。具体流程为:1)第一帧点云数据设置为地图2)提取关键帧点云,拼接成地图,保证稀疏点云数据。3)除了全局地图,还需要在当前帧附近形成滑动窗局部地图,减小计算...
原创
发布博客 2020.04.23 ·
2487 阅读 ·
11 点赞 ·
5 评论 ·
59 收藏

LOAM源码解析4——transformMaintenance

这一部分主要为了:融合后的Lidar轨迹(里程计位姿+地图优化的位姿)main函数订阅的两个消息节点:1、laserOdometry节点发布的/laser_odom_to_init消息(Lidar里程计估计位姿到初始坐标系的变换)2、laserMapping节点发布的/aft_mapped_to_init消息(laserMapping节点优化后的位姿到初始坐标系的变换)发布的节点:发布...
原创
发布博客 2020.04.20 ·
781 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

LOAM源码解析3——laserMapping

SLAM系统前面大多是先估计相邻两帧之间相对位姿估计,接下来开始建图,然后根据建图结果对现有姿态进行优化,最后把当前这特征点填充进地图,且估计当前帧相对于世界坐标系下的位姿。在扫描周期末尾激光雷达里程计输出畸变矫正过的点云Pk+1^\widehat{P_{k+1}}Pk+1​​,同时还有整个周期内每个点的姿态Tk+1LT_{k+1}^{L}Tk+1L​。雷达建图过程是为了把Pk+1^\wideh...
原创
发布博客 2020.04.20 ·
1836 阅读 ·
4 点赞 ·
2 评论 ·
19 收藏

LOAM源码解析2——laserOdometry

这是LOAM第二部分Lidar laserOdometry雷达里程计。在第一章提取完特征点后,需要对特征点云进行关联匹配,之后估计姿态。主要分为两部分:特征点关联使用scan-to-scan方式t和t+1时刻相邻两帧的点云数据进行配准,分为边缘点匹配和平面点匹配两部分。计算点到直线的距离和点到平面的距离。姿态解算根据匹配的特征点云使用LM算法估计接收端位姿。这部分代码完全是放在mai...
原创
发布博客 2020.04.18 ·
1548 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

LOAM源码解析——scanRegistration

入手激光雷达SLAM,从最经典的LOAM源码开始,之后会对秦通在此基础上改进的A-LOAM源码进行观看,应该就会很简单了,第三步是把LEGO-LOAM的源码进行解读。之前对LOAM的论文进行了详细解读。LOAM的源码主要分为scanRegistration提取特征点、laserOdometry 10HZ估计位姿、laserMapping 1HZ构建三维地图、transforMaintenance...
原创
发布博客 2020.04.12 ·
1580 阅读 ·
4 点赞 ·
3 评论 ·
22 收藏

激光雷达坐标系、方向角和仰角

激光雷达介绍单线的激光雷达Lidar,通过发射和接收激光束来计算与观测物体精确距离。光速测距:通过飞行时间TOF,首先激光发射器发射激光脉冲,计时器记录发射时间;脉冲经物体反射后由接收器接受,计时器记录接受时间;时间差乘上光速即得到距离的两倍。三维扫描点云:通过TOF时间差获得距离,通过水平旋转扫描测角度,并根据这两个参数建立二维的极坐标系,再通过获取不同俯仰角度获得三维的高度信息。下图...
原创
发布博客 2020.04.11 ·
18522 阅读 ·
25 点赞 ·
4 评论 ·
120 收藏

如何通过Git将本地项目上传到Github

一、Git下载安装先说下Git官网下载太慢的问题,通过下述链接,阿里的镜像可以实现快速下载。https://npm.taobao.org/mirrors/git-for-windows/一直下拉,找到如图所示这些链接(不同的安装方式与不同的系统)。二、将本地项目通过Git上传到Github上重点参考下面两个博客即可https://blog.csdn.net/Lucky_LX...
原创
发布博客 2020.04.09 ·
232 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

LeGO-LOAM:轻量级地面优化的建图

LEGO-LOAM 是基于LOAM优化的系统,相比之下,有以下优点:1)LeGO-LOAM是轻量级的,因为可以在嵌入式系统上实现实时姿态估计和建图。2)去除失真数据,在地面分离之后,执行点云分割以丢弃可能表示不可靠特征的点。3)LeGO-LOAM引入地面优化,因为我们引入了两步优化姿势估计。从地面提取的平面特征用于在第一步中获得[tz,θroll,θpitch][t_{z},\theta_{...
原创
发布博客 2020.04.07 ·
6181 阅读 ·
5 点赞 ·
0 评论 ·
65 收藏

LOAM:实时的雷达里程计和建图

之前对视觉SLAM主要的开源框架,ORB-SLAM2、SVO等进行了介绍,然后疫情期间对VINS-Mono进行了详细的源码解析,接下来考虑到工作原因需要用到激光雷达、GNSS、IMU等多传感器融合,所以接下来会对最经典的激光SLAM框架LOAM和LeGo-LOAM两个开源系统进行总结。之前对激光SLAM的印象就是激光雷达采集到点云数据,然后用ICP对准就可获得接收端位姿估计。第一篇经典的激光S...
原创
发布博客 2020.04.07 ·
5029 阅读 ·
17 点赞 ·
1 评论 ·
80 收藏

粒子滤波定位

理论知识除了线性状态估计的KF和非线性状态估计的EKF,还有一种可以解决非线性、非高斯问题的粒子滤波算法,粒子滤波主要基于蒙特卡洛方法,使用粒子集来表示概率。粒子滤波主要分为四部分:初始化、预测、粒子权重更新、重采样,之后在重复的预测、更新、重采样,使得粒子逐渐向真实位置聚集。1、初始化粒子滤波初始化需要初始的位置(x,y),航向(yaw),以及高斯噪声。单纯用GPS的结果是有很大...
原创
发布博客 2020.05.16 ·
3192 阅读 ·
6 点赞 ·
1 评论 ·
41 收藏

多传感器融合定位2(封装KF和EKF)

有了上一节分别对激光雷达做KF、对毫米波雷达做EKF两种流程之后,我们合并KF和EKF的跟踪算法的代码,将他们封装在一个名为KalmanFilter的类中,方便后续调用。下面做一个多传感器融合定位实验,采集到的数据为两种交替出现的数据。代码整体框架如图所示:前言无论是KF处理线性问题还是EKF处理非线性问题,它都只涉及单一传感器的障碍物跟踪。激光雷达测量位置精度更高但是无法测量速度,毫米波...
原创
发布博客 2020.05.16 ·
1922 阅读 ·
0 点赞 ·
0 评论 ·
24 收藏

多传感器融合定位1(激光雷达+毫米波雷达)

前言LZ最近在看Udacity的无人驾驶课程,该课程主要分为三部分,第一部分的课程主要使用Python实现的车道线识别、车牌识别等计算机视觉项目。由于我对定位、建图等方面有些知识储备,所以先从第二部分课程开始。本节将用最简洁的话讲解卡尔曼滤波KF、非线性卡尔曼滤波EKF等知识点,并就此实现一个多传感器融合定位的小demo,后面会就粒子滤波PF专门开一个章节讲解。一、卡尔曼滤波 KF1、引子...
原创
发布博客 2020.05.16 ·
5637 阅读 ·
9 点赞 ·
1 评论 ·
106 收藏

Endnote连接Word自动插入毕业论文参考文献

一、Wod中自动插入参考文献1、在百度学术中导出endnote格式找到后点击“引用”,然后选择EndNote,就可以导出来了。2、导入到word中先打开Endnote库,把导出的文件打开,之后选中需要导入的文件,如下图蓝色所示。打开word,导航栏选择En的Note X9,先把光标放在打算插入参考文献标注的地方,然后选择Insert Selected Citiation...
原创
发布博客 2020.03.24 ·
3228 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏
加载更多