UVaLive/LA 6807 Túnel de Rata(最大生成树)

FILE 6807 - Túnel de Rata


题目大意:

去除图中的所有回路,且去除的边权和最小。


解题思路:

因为要使去掉的边最小,剩下的图有不能又任何回路,可以想到生成树的模型,生成树上在加边,就会构成回路。所以尽可能使得生成树上的边权最大,那么去掉的边权和就最小。用Kruskal算法可以很方便地实现。


参考代码:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;

const int MAXN = 10010;
const int MAXM = 100010;
struct Path {
    int u, v, w;
    bool operator < (const Path &b) {
        return w > b.w;
    }
} path[MAXM];

int father[MAXN], rank_set[MAXN], s, l, sum, nCase, cCase;
bool used[MAXM];

int find_set(int x) {
    return father[x] == x ? x : father[x] = find_set(father[x]);
}

void union_set(int x, int y) {
    int a = find_set(x), b = find_set(y);
    if (a == b) return;
    if (rank_set[a] < rank_set[b]) {
        father[a] = b;
    } else {
        father[b] = a;
        if (rank_set[a] == rank_set[b]) {
            rank_set[a]++;
        }
    }
}

void input() {
    scanf("%d%d", &s, &l);
    sum = 0;
    for (int i = 0; i < l; i++) {
        scanf("%d%d%d", &path[i].u, &path[i].v, &path[i].w);
        sum += path[i].w;
    }
}

void init() {
    for (int i = 1; i <= s; i++) {
        father[i] = i;
        rank_set[i] = 1;
    }
    memset(used, false, sizeof(used));
}

void solve() {
    sort(path, path+l);

    int ans = 0;
    for (int i = 0; i < l; i++) {
        if (find_set(path[i].u) != find_set(path[i].v)) {
            union_set(path[i].u, path[i].v);
            ans += path[i].w;
            used[i] = true;
        }
    }

    int ans1 = sum - ans;
    for (int i = 0; i < l; i++) {
        if (!used[i]) {
            printf("Case #%d: %d %d\n", ++cCase, ans1, path[i].w);
            break;
        }
    }
}

int main() {
    scanf("%d", &nCase);
    while (nCase--) {
        input();
        init();
        solve();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值