222. Little Rooks
time limit per test: 0.25 sec.
memory limit per test: 65536 KB
memory limit per test: 65536 KB
input: standard
output: standard
output: standard
Inspired by a "Little Bishops" problem, Petya now wants to solve problem for rooks. 
A rook is a piece used in the game of chess which is played on a board of square grids. A rook can only move horizontally and vertically from its current position and two rooks attack each other if one is on the path of the other.
Given two numbers n and k, your job is to determine the number of ways one can put k rooks on an n × n chessboard so that no two of them are in attacking positions.
A rook is a piece used in the game of chess which is played on a board of square grids. A rook can only move horizontally and vertically from its current position and two rooks attack each other if one is on the path of the other.
Given two numbers n and k, your job is to determine the number of ways one can put k rooks on an n × n chessboard so that no two of them are in attacking positions.
Input
The input file contains two integers n (1 ≤ n ≤ 10) and k (0 ≤ k ≤ n2).
Output
Print a line containing the total number of ways one can put the given number of rooks on a chessboard of the given size so that no two of them are in attacking positions.
Sample test(s)
Input
4 4 
Output
24
#include <iostream>
#include <cstdio>
using namespace std;
int n, k;
long long ans;
int main() {
    while (~scanf("%d%d", &n, &k)) {
        if (k > n) {
            printf("%d\n", 0);
            continue;
        }
        ans = 1;
        for (int i = n; i >= n-k+1; i--) {
            ans *= i;
        }
        ans = ans * ans;
        for (int i = k; i > 1; i--) {
            ans /= i;
        }
        printf("%lld\n", ans);
    }
    return 0;
}
                  
                  
                  
                  
                            
                            
本文探讨了一个经典的组合数学问题:如何计算在n×n的棋盘上放置k个战车的方法数,使得任意两个战车都不处于互相攻击的位置。文章提供了详细的算法实现,并附带了完整的代码。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					333
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            