目标检测细节
文章平均质量分 56
武乐乐~
努力上进的懒虫
展开
-
cocoeval函数使用
文章目录背景1、代码2、文件下载背景 coco数据集在目标检测任务中经常用到,而coco并不像voc那样直白。尤其在评估方法方面。因此,本文记录下cocoeval函数使用,记性不好。1、代码from pycocotools.coco import COCOfrom pycocotools.cocoeval import COCOevalimport numpy as npimport pylab,jsonif __name__ == "__main__": gt_path =原创 2021-02-26 15:46:35 · 4635 阅读 · 7 评论 -
目标检测TXT数据集转VOC数据集
简要介绍 若你想制作成自己VOC数据集,难点就在于xml标注文件制作。因此,这里给出一个实例。 假如现在你有对应图像的txt标注文件,文件格式如下图所示: 而txt中标注格式如下图(每一行代表一个对象的box和类别):231,88,483,256,ca原创 2020-11-23 16:30:46 · 1548 阅读 · 0 评论 -
pytorch读取VOC数据集
简单介绍VOC数据集首先介绍下VOC2007数据集(下图是VOC数据集格式,为了叙述方便,我这里只放了两张图像)Main文件夹内的trainval.txt中的内容如下:存储了图像的名称不加后缀。000009000052Annotations中存储的是标注文件,以xml文件存储。这里简单截个图说明一下:<annotation> <folder>VOC2007</folder> <filename>000009.jpg</file原创 2020-11-22 18:21:42 · 5548 阅读 · 2 评论 -
非极大值抑制算法详解
非极大值抑制算法详解目录非极大值抑制算法详解简介非极大值抑制算法符号介绍NMS的基本思路torch版本的NMS代码实现补充---numpy版本的NMS实现细节简介 先简单介绍下非极大值抑制(NMS),其目的是用来去除冗余的检测框。举个例子:以voc2007数据集中单张图像为例,假设下图中绿色框为各个汽车的真实框,而红色框也是正样本框,但是我们最终希望输出仅仅包含绿色框的检测对象。因此为了抑制这部分红色框,采用非极大值抑制。非极大值抑制算法符号介绍 首先利用torch(不是numpy)实现下上述原创 2020-11-22 17:43:21 · 6135 阅读 · 9 评论