python中的yield和yield from

本文介绍了Python中的yield和生成器的概念。通过示例解析了yield如何工作,以及生成器在内存优化中的作用。同时,提到了send函数,说明了如何通过send向生成器内部传递参数。最后,对比了使用列表和生成器在处理大量数据时的内存效率差异。
摘要由CSDN通过智能技术生成

参考:https://blog.csdn.net/mieleizhi0522/article/details/82142856

首先,如果你还没有对yield有个初步分认识,那么你先把yield看做“return”,这个是直观的,它首先是个return,普通的return是什么意思,就是在程序中返回某个值,返回之后程序就不再往下运行了。看做return之后再把它看做一个是生成器(generator)的一部分(带yield的函数才是真正的迭代器),好了,如果你对这些不明白的话,那先把yield看做return,然后直接看下面的程序,你就会明白yield的全部意思了:

def foo():
    print("starting...")
    while True:
        res = yield 4
        print("res:",res)
g = foo()
print(next(g))
print("*"*20)
print(next(g))

就这么简单的几行代码就让你明白什么是yield,代码的输出这个:

starting...
4
********************
res: None
4

我直接解释代码运行顺序,相当于代码单步调试:

1.程序开始执行以后,因为foo函数中有yield关键字,所以foo函数并不会真的执行,而是先得到一个生成器g(相当于一个对象)

2.直到调用next方法,foo函数正式开始执行,先执行foo函数中的print方法,然后进入while循环

3.程序遇到yield关键字,然后把yield想想成return,return了一个4之后,程序停止,并没有执行赋值给res操作,此时next(g)语句执行完成,所以输出的前两行(第一个是while上面的print的结果,第二个是return出的结果)是执行print(next(g))的结果,

4.程序执行print("*"*20),输出20个*

5.又开始执行下面的print(next(g)),这个时候和上面那个差不多,不过不同的是,这个时候是从刚才那个next程序停止的地方开始执行的,也就是要执行res的赋值操作,这时候要注意,这个时候赋值操作的右边是没有值的(因为刚才那个是return出去了,并没有给赋值操作的左边传参数),所以这个时候res赋值是None,所以接着下面的输出就是res:None,

6.程序会继续在while里执行,又一次碰到yield,这个时候同样return 出4,然后程序停止,print函数输出的4就是这次return出的4.

 

到这里你可能就明白yield和return的关系和区别了,带yield的函数是一个生成器,而不是一个函数了,这个生成器有一个函数就是next函数,next就相当于“下一步”生成哪个数,这一次的next开始的地方是接着上一次的next停止的地方执行的,所以调用next的时候,生成器并不会从foo函数的开始执行,只是接着上一步停止的地方开始,然后遇到yield后,return出要生成的数,此步就结束。

****************************************************************************************************************************************

def foo():
    print("starting...")
    while True:
        res = yield 4
        print("res:",res)
g = foo()
print(next(g))
print("*"*20)
print(g.send(7))

再看一个这个生成器的send函数的例子,这个例子就把上面那个例子的最后一行换掉了,输出结果:

starting...
4
********************
res: 7
4

先大致说一下send函数的概念:此时你应该注意到上面那个的紫色的字,还有上面那个res的值为什么是None,这个变成了7,到底为什么,这是因为,send是发送一个参数给res的,因为上面讲到,return的时候,并没有把4赋值给res,下次执行的时候只好继续执行赋值操作,只好赋值为None了,而如果用send的话,开始执行的时候,先接着上一次(return 4之后)执行,先把7赋值给了res,然后执行next的作用,遇见下一回的yield,return出结果后结束。

 

5.程序执行g.send(7),程序会从yield关键字那一行继续向下运行,send会把7这个值赋值给res变量

6.由于send方法中包含next()方法,所以程序会继续向下运行执行print方法,然后再次进入while循环

7.程序执行再次遇到yield关键字,yield会返回后面的值后,程序再次暂停,直到再次调用next方法或send方法。

 

 

 

这就结束了,说一下,为什么用这个生成器,是因为如果用List的话,会占用更大的空间,比如说取0,1,2,3,4,5,6............1000

你可能会这样:

for n in range(1000):
    a=n

这个时候range(1000)就默认生成一个含有1000个数的list了,所以很占内存。

这个时候你可以用刚才的yield组合成生成器进行实现,也可以用xrange(1000)这个生成器实现

yield组合:

def foo(num):
    print("starting...")
    while num<10:
        num=num+1
        yield num
for n in foo(0):
    print(n)

输出:

starting...
1
2
3
4
5
6
7
8
9
10

 xrange(1000):

for n in xrange(1000):
    a=n

 其中要注意的是python3时已经没有xrange()了,在python3中,range()就是xrange()了,你可以在python3中查看range()的类型,它已经是个<class 'range'>了,而不是一个list了,毕竟这个是需要优化的。

 

yield_gen.py

# coding=utf-8

def genYieldFrom(*args):
    for item in args:
        yield from item


def genYield():
    for i in range(5):
        yield i*10


if __name__ == "__main__":

    arr1 = ['a', 'b', 'c', 'd', 'e']
    arr2 = "ABC"
    dic3 = {"k1": "v2", "k2": "v2", "k3": "v3"}
    print("yield_from onece {}".format(list(genYieldFrom(arr1, arr2, dic3))))
    print("list(dic3) {}".format(list(dic3)))
    print("dict(dic3) {}".format(dict(dic3)))

    for i in genYield():
        print("yield {}".format(i))

    print("yield once {}".format(list(genYield())))

结果:

yield_from onece ['a', 'b', 'c', 'd', 'e', 'A', 'B', 'C', 'k1', 'k2', 'k3']
list(dic3) ['k1', 'k2', 'k3']
dict(dic3) {'k1': 'v2', 'k2': 'v2', 'k3': 'v3'}
yield 0
yield 10
yield 20
yield 30
yield 40
yield once [0, 10, 20, 30, 40]
PS E:\study\py\async>

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值