论文笔记
WillerW
这个作者很懒,什么都没留下…
展开
-
论文笔记:The Marginal Value of Adaptive Gradient Methods in Machine Learning
这篇文章质疑了adaptive优化算法的性能,比较了SGD、SGD with momentum与AdaGrad、RMSProp、Adam方法的泛化性能,并通过优化构建一个凸优化问题和四种深度网络验证了观点。主要结论有:SGD and SGD with momentum outperform adaptive methods on the development/test set.adapt...原创 2018-12-30 18:42:46 · 594 阅读 · 0 评论 -
论文笔记: An Analysis of Scale Invariance in Object Detection – SNIP
有关目标检测器训练的两个问题作者提出了目标检测中有关训练的两个问题:对图像进行上采样以获得更好的性能是否有必要?当微调一个由分类任务预训练得到的网络时,训练图像的尺度是否应该限制在一个比较小的区间(64x64 到 256x256),还是所有尺寸的目标都参与到训练中。问题一在第一个问题上,作者在多尺度分类问题上进行了研究,得到了主要结论有:当训练图像与测试图像的分辨率相差越大时,性...原创 2018-12-30 18:42:33 · 263 阅读 · 0 评论 -
论文阅读:CornerNet: Detecting Objects as Paired Keypoints
CornerNet简介很多目标检测会采用anchor来提升目标检测的定位精度,使用anchor主要有两个缺点:通常需要大量的anchor,但是只有少部分的anchors会与ground truth重叠,造成正负样本的不均衡,降低训练的效率;使用anchor需要一些超参数和设计方法,包括了anchor的数量、尺寸和比例等。需要通过对超参数调参完成anchor的设计,在多尺度框架下应对多分辨...原创 2018-12-30 18:42:08 · 214 阅读 · 0 评论 -
论文笔记:Discovery of Latent 3D Keypoints via End-to-end Ceometric Reasoning
这是在NeurIPS2018上的一篇文章,提出了一种检测RGB图像中3D关键点的category-specific方法。针对某一类别,所提出的网络可以学习得到一组最优的3D隐藏关键点,以及对应的检测器。通过学习得到隐藏关键点,可以克服手工标注关键点工作量大和难定义的问题(expensive and ill-defined)。网络的输入是同一物体的在不同视角下仿真得到的一对图像,以及目标的二值掩...原创 2018-12-30 20:02:16 · 1335 阅读 · 0 评论 -
论文笔记:6-DoF Object Pose from Semantic Keypoints
ICRA上的一篇文章,提出了一种检测三维物体关键点检测以及6 DoF位姿估计的方法,可以用于instance- and category-based 的场景。首先采用Faster R-CNN检测得到目标的2D bb, 然后在执行所提出的方法。所使用的网络结构是stacking hourglass,来源于human pose estimation,与cornetNet中的backbone有些类似。...原创 2018-12-30 21:17:12 · 1567 阅读 · 0 评论 -
论文笔记:Understanding the Limitations of CNN-based Absolute Camera Pose Regression
摘要Visual localization is the task of accurate camera pose estimation in a known scene. It is a key problem in computer vision and robotics, with applications including selfdriving cars, Structure-fro...原创 2019-04-02 10:47:43 · 1350 阅读 · 0 评论 -
论文笔记:Spherical Regression: Learning Viewpoints, Surface Normals and 3D Rotations on n-Spheres
文章目录摘要动机深度分类与回归网络训练分类回归结论球回归n球上受约束回归结论$S^1$,$S^2$, $S^3$上的特殊情况$S^1$:欧拉角估计$S^2$:表面法向量估计$S^3$:3D旋转估计实验结论摘要Many computer vision challenges require continuous outputs, but tend to be solved by discrete ...原创 2019-04-15 19:43:42 · 404 阅读 · 0 评论 -
论文笔记: Monocular Object Orientation Estimation using Riemannian Regression and Classification Network
这篇文章做的是从单目图像中使用CNN预测刚体目标的朝向。所谓朝向其实就是相机位姿中旋转部分,即目标在相机坐标系中旋转。之前也有过这种想法,将目标的检测中的anchor机制引入到旋转量的估计中。将2D旋转空间分为若干个关键位置,给定一张输入图片先预测最近的关键位置,再预测一个在该关键位置上的偏移量,得到最终的旋转量的估计。这样做的方法既可以避免了建立离散图像检索库造成的离散问题,也可以一定程度上解...原创 2019-05-02 15:18:55 · 387 阅读 · 0 评论 -
论文笔记:ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape
1introduction这篇cvpr2019文章提出了一种度量精确的单目3D目标检测端对端方法。(arxiv:1812.02781)主要贡献有三点:一种度量精确的单目3D目标检测端对端方法,包括一种可微分的2D ROI到3D ROI 提升映射,并提供了用于回归3D box 实例的所有组件;一种用于在度量空间对其3D box的损失函数,直接优化其关于真值的误差;扩展模型,将其用于预测度...原创 2019-05-03 14:59:15 · 2251 阅读 · 1 评论