-----Edit by ZhuSenlin HDU
本人博文<<背包问题——“01背包”详解及实现(包含背包中具体物品的求解)>>中已谈过01背包,这里再重写一下01背包的动态规划状态及状态方程:
设背包容量为V,一共N件物品,每件物品体积为C[i],每件物品的价值为W[i]
1) 子问题定义:F[i][j]表示前i件物品中选取若干件物品放入剩余空间为j的背包中所能得到的最大价值。
2) 根据第i件物品放或不放进行决策
(1-1)
最优方案总数这里指物品总价值最大的方案数。
我们设G[i][j]代表F[i][j]的方案总数,那么最总结果应该是G[N][V]。我们初始化G[][]为1,因为对每个F[i][j]至少应该有一种方案,即前i件物品中选取若干件物品放入剩余空间为j的背包使其价值最大的方案数至少为1,因为F[i][j]一定存在。
下面开始分析怎么求G[i][j]。对于01背包来说:
如果F[i][j]=F[i-1][j]且F[i][j]!=F[i-1][j-C[i]]+W[i]说明在状态[i][j]时只有前i-1件物品的放入才会使价值最大,所以第i件物品不放入,那么到状态[i][j]的方案数应该等于[i-1][j]状态的方案数即G[i][j]=G[i-1][j];
如果F[i][j]=F[i-1][j-C[i]]+W[i] 且F[i][j]!=F[i-1][j]说明在状态[i][j]时只有第i件物品的加入才会使总价值最大,那么方案数应该等于[i-1][j-C[i]]的方案数,即G[i][j]=G[i-1][j-C[i]];
如果F[i][j]=F[i-1][j-C[i]]+W[i] 且F[i][j]=F[i-1][j]则说明即可以通过状态[i-1][j]在不加入第i件物品情况下到达状态[i][j],又可以通过状态[i-1][j-C[i]]在加入第i件物品的情况下到达状态[i][j],并且这两种情况都使得价值最大且这两种情况是互斥的,所以方案总数为G[i][j]=G[i-1][j-C[i]]+ G[i-1][j]。
经过上面的分析,得出下述伪代码:
F[0][] ← 0
F[][0] ← 0
G[][ ] ← 1
for i ← 1 to N
do for j ← 1 to V
F[i][j] ← F[i-1][j]
G[i][j] ← G[i-1][j]
if (j >= C[i])
if (F[i][j] < F[i-1][j-C[i]]+W[i])
then F[i][j] ← F[i-1][j-C[i]]+W[i]
G[i][j] ← G[i-1][j-C[i]]
else if (F[i][j] = F[i-1][j-C[i]]+W[i])
then G[i][j] ← G[i-1][j]+G[i-1][j-C[i]]
return F[N][V] and G[N][V]
上述方法在保存状态F[][]及G[][]时需要O(NV)的空间复杂度,下面我们对空间复制度进行优化。
压缩空间复杂度为O(V)
F[i][j]与G[i][j]只分别与F[i-1][]和G[i-1][]的状态有关,所以我们可以用两个一维数组F[]和G[]来替换二维数组F[][]和G[][]。具体思想请看博文
<<背包问题——“01背包”详解及实现(包含背包中具体物品的求解)>>
下面直接给出伪代码:
F[] ← 0
G[] ← 1
for i ← 1 to N
do for j ← V to C[i]
if (F[j] < F[j-C[i]]+W[i])
then F[j] ← F[j-C[i]]+W[i]
G[j] ← G[j-C[i]]
else if (F[j] = F[j-C[i]]+W[i])
then G[j] ← G[j]+G[j-C[i]]
return F[V] and G[V]
下面对数据表给出以上两种不同空间复杂度的详细代码:
物品号i | 1 | 2 | 3 | 4 | 5 |
体积C | 3 | 2 | 5 | 4 | 5 |
价值W | 5 | 5 | 10 | 10 | 10 |
#include <iostream>
#include <cstring>
#include "CreateArray.h" //该头文件是动态创建和销毁二维数组,读者自己实现
using namespace std;
时间复杂度O(VN),空间复杂度为O(VN):
int Package01Optimal(int Weight[], int Value[], int nLen, int nCapacity)
{
int** MaxValueTable = NULL;
int** OptimalTable = NULL;
CreateTwoDimArray(MaxValueTable,nLen+1,nCapacity+1); //创建最大价值表
CreateTwoDimArray(OptimalTable,nLen+1,nCapacity+1); //创建最优方案总数表
//initiallize all OptimalTable[][] with 1
for(int i = 0; i <= nLen; i++)
for(int j = 0; j <= nCapacity; j++)
OptimalTable[i][j] = 1;
for(int i = 1; i <= nLen; i++)
{
for(int j = 1; j <= nCapacity; j++)
{
MaxValueTable[i][j] = MaxValueTable[i-1][j];
OptimalTable[i][j] = OptimalTable[i-1][j];
if(j >= Weight[i-1])
{
if(MaxValueTable[i][j] < MaxValueTable[i-1][j-Weight[i-1]]+Value[i-1])
{
MaxValueTable[i][j] = MaxValueTable[i-1][j-Weight[i-1]]+Value[i-1];
OptimalTable[i][j] = OptimalTable[i-1][j-Weight[i-1]];
}
else if(MaxValueTable[i][j] == (MaxValueTable[i-1][j-Weight[i-1]]+Value[i-1]))
{
OptimalTable[i][j] = OptimalTable[i-1][j]+OptimalTable[i-1][j-Weight[i-1]];
}
}
}
}
cout << endl << "OptimalCount:" << OptimalTable[nLen][nCapacity] << endl;
int nRet = MaxValueTable[nLen][nCapacity];
DestroyTwoDimArray(MaxValueTable,nLen+1); //销毁最大价值表,防止内存泄露
DestroyTwoDimArray(OptimalTable,nLen+1); //销毁最优方案总数表,防止内存泄露
return nRet;
}
时间复杂度O(VN),空间复杂度为O(V):
int Package01Optimal_Compress(int Weight[], int Value[], int nLen, int nCapacity)
{
int * MaxValueTable = new int [nCapacity+1];
memset(MaxValueTable,0,(nCapacity+1)*sizeof(int));
//initiallize all OptimalTable[] with 1
int* OptimalTable = new int[nCapacity+1];
for(int i = 0; i <= nCapacity; i++)
OptimalTable[i] = 1;
for(int i = 0; i < nLen; i++)
{
for(int j = nCapacity; j >=Weight[i]; j--)
{
if(MaxValueTable[j] < MaxValueTable[j-Weight[i]]+Value[i])
{
MaxValueTable[j] = MaxValueTable[j-Weight[i]]+Value[i];
OptimalTable[j] = OptimalTable[j-Weight[i]];
}
else if(MaxValueTable[j] == MaxValueTable[j-Weight[i]]+Value[i])
OptimalTable[j] = OptimalTable[j-Weight[i]]+OptimalTable[j];
}
}
cout << endl << "OptimalCount:" << OptimalTable[nCapacity] << endl;
int nRet = MaxValueTable[nCapacity];
delete [] OptimalTable;
delete [] MaxValueTable;
return nRet;
}
测试代码:
int main()
{
//int Weight[] = {1,1,1,1,1,1};
//int Value[] = {2,2,2,2,2,2};
int Weight[] = {3,2,5,4,5};
int Value[] = {5,5,10,10,10};
int nCapacity = 10;
cout << "MaxValue:" << Package01Optimal(Weight,Value,sizeof(Weight)/sizeof(int),nCapacity) << endl;
cout << "MaxValue:" << Package01Optimal_Compress(Weight,Value,sizeof(Weight)/sizeof(int),nCapacity) << endl;
return 0;
}
本文部分内容参考《背包九讲》