老师讲的5个步骤和书上的7个步骤有什么不同

我觉得老师说的那五个步骤,跟书上没什么不一样,书上只是多了前两个步骤,
那两个步骤一般在网上买东西都要用到,所以那两个步骤好像可有可没,像书上说的:前两步与SET无关,从第三步开始SET起作用,一直到第六步,在处理过程中通信协议、请求信息的格式、数据类型的定义等, SET都有明确的规定。
不过老师总结的那五个步骤,我有点模糊,书上的明白一点,老师PPT上的那五个
步骤,我看不太明白,但我后来看可书上的,所以SET协议基本上懂了。总之,除了

书上那前两个步骤多了,其他的我觉得没什么不同。

基本一样啦,只是老师用自己的话总结了。

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
空间固定效应模型与基准面板回归模型都是为了解决面板数据分析中可能存在的空间异质性问题。但是它们的方法和步骤略有不同。 空间固定效应模型是一种固定效应模型,它假设数据存在空间自相关,即相邻地区之间的观测值存在相关性。在空间固定效应模型中,我们可以使用空间滞后项(Spatial Lag)来捕捉空间自相关性,从而得到更加准确的估计结果。具体步骤如下: 1. 检验空间自相关性:使用Moran's I指数或者Lagrange Multiplier(LM)检验来验证是否存在空间自相关性。 2. 建立模型:在检验通过后,建立空间固定效应模型,将空间滞后项加入到模型中。 3. 估计参数:使用最小二乘法或广义最小二乘法来估计模型参数。 基准面板回归模型是一种差分面板数据模型,它假设观测值与时间和空间无关。在基准面板回归模型中,我们可以使用双重差分(Double Difference)或者三重差分(Triple Difference)来消除时间和空间异质性的影响,从而得到更加准确的估计结果。具体步骤如下: 1. 建立模型:建立基准面板回归模型,将被解释变量与解释变量都进行差分处理。 2. 估计参数:使用最小二乘法或广义最小二乘法来估计模型参数。 总之,空间固定效应模型和基准面板回归模型都是解决面板数据分析中可能存在的空间异质性问题的方法,但是具体的步骤和方法略有不同

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wunvjj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值