问题描述:
Given an N * M matrix with each entry equal to 0 or 1. We can find some rectangles in the matrix whose entries are all 1, and we define the maximum area of such rectangle as this matrix’s goodness.
We can swap any two columns any times, and we are to make the goodness of the matrix as large as possible.
Input
There are several test cases in the input. The first line of each test case contains two integers N and M (1 ≤ N,M ≤ 1000). Then N lines follow, each contains M numbers (0 or 1), indicating the N * M matrix
Output
Output one line for each test case, indicating the maximum possible goodness
Sample Input
3 4 1011 1001 0001 3 4 1010 1001 0001Sample Output
4
2
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=1e3+100;
char arr[maxn][maxn];
int dp[maxn][maxn];
bool cmp(int a,int b)
{
return a>b;
}
int main()
{
int n,m;
while (scanf("%d%d",&n,&m)!=EOF) {
for (int i=1;i<=n;i++) {
scanf("%s",arr[i]+1);
}
memset (dp,0,sizeof (dp));
for (int j=1;j<=m;j++) {
for (int i=n;i>=1;i--) {
if (arr[i][j]=='1') dp[i][j]=dp[i+1][j]+1;
else dp[i][j]=0;
}
}
int ans=0;
for (int i=1;i<=n;i++) {
sort(dp[i]+1,dp[i]+1+m,cmp);
int res=0;
for (int j=1;j<=m;j++)
res=max(res,dp[i][j]*j);
ans=max(ans,res);
}
printf("%d\n",ans);
}
return 0;
}