- 一个整型数组里除了两个数字之外,其他的数字都出现了两次。请写程序找出这两个只出现一次的数字。
-
每个测试案例包括两行:第一行包含一个整数n,表示数组大小。2<=n <= 10^6。第二行包含n个整数,表示数组元素,元素均为int。
- 对应每个测试案例,输出数组中只出现一次的两个数。输出的数字从小到大的顺序。
-
8 2 4 3 6 3 2 5 5
-
4 6
-
题目描述:
-
输入:
-
输出:
-
样例输入:
-
样例输出:
这个题目的突破口在哪里?题目为什么要强调有一个数字出现一次,其他的出现两次?我们想到了异或运算的性质:任何一个数字异或它自己都等于0。也就是说,如果我们从头到尾依次异或数组中的每一个数字,那么最终的结果刚好是那个只出现依次的数字,因为那些出现两次的数字全部在异或中抵消掉了。
有了上面简单问题的解决方案之后,我们回到原始的问题。如果能够把原数组分为两个子数组。在每个子数组中,包含一个只出现一次的数字,而其他数字都出现两次。如果能够这样拆分原数组,按照前面的办法就是分别求出这两个只出现一次的数字了。
我们还是从头到尾依次异或数组中的每一个数字,那么最终得到的结果就是两个只出现一次的数字的异或结果。因为其他数字都出现了两次,在异或中全部抵消掉了。由于这两个数字肯定不一样,那么这个异或结果肯定不为0,也就是说在这个结果数字的二进制表示中至少就有一位为1。我们在结果数字中找到第一个为1的位的位置,记为第N位。现在我们以第N位是不是1为标准把原数组中的数字分成两个子数组,第一个子数组中每个数字的第N位都为1,而第二个子数组的每个数字的第N位都为0。
现在我们已经把原数组分成了两个子数组,每个子数组都包含一个只出现一次的数字,而其他数字都出现了两次。因此到此为止,所有的问题我们都已经解决。
AC代码:
#include<stdio.h>
void findIsolateTwo(int *arr, int len, int *result)
{
int i, all = 0, flag = 1;
for(i = 0; i < len ; i++) {
all ^= arr[i];
}
while(!(all&flag)) {
flag <<= 1;
}
result[0] = result[1] = 0;
for(i = 0; i < len; i++)
{
if(flag&arr[i])
result[0] ^= arr[i];
else
result[1] ^= arr[i];
}
}
int main() {
int i, n;
while(scanf("%d", &n) != EOF) {
int num[n];
for(i = 0; i < n; i++) {
scanf("%d", &num[i]);
}
int result[2];
findIsolateTwo(num, n, result);
if(result[0] < result[1]) {
printf("%d %d\n", result[0], result[1]);
}
else {
printf("%d %d\n", result[1], result[0]);
}
}
return 0;
}
/**************************************************************
Problem: 1351
User: wusuopuBUPT
Language: C
Result: Accepted
Time:800 ms
Memory:4356 kb
****************************************************************/