线性回归原理和实践--《机器学习实战》笔记

本文介绍了线性回归的基本概念,包括回归与分类的区别,线性回归的步骤,以及如何计算回归系数。进一步讨论了局部加权线性回归及其优缺点,并介绍了两种缩减方法——岭回归和lasso。岭回归通过添加正则化项解决了矩阵奇异的问题,而lasso通过L1正则化实现特征选择。前向逐步回归作为迭代算法,有助于理解模型并选择重要特征。
摘要由CSDN通过智能技术生成

回归与分类的区别

和分类问题一样,回归问题也是预测目标值的过程。回归与分类不同点在于,前者预测连续型变量,后者预测离散型变量。

线性回归

  • 结果易于理解
  • 对非线性的数据拟合不好
  • 适用于数值型和标称型数据
线性回归步骤
  1. 将标称型数据编码为二值数据(one-Hot编码)
  2. 训练算法得到回归系数
  3. 利用 R2 评价模型
  4. 使用回归系数预测数据
回归系数

对于给定的训练数据集 x 如何训练得到回归系数 w 呢?常用的是采用平方误差最小原则,也就是:

mini=1N(yixTiw)2

用矩阵表示可以表示为 (yXw)T(yXw) 。对 w 求导,有 XT(YXw) ,关于标量与向量求导内容可参考。令导数为零有:

w^=(XT
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值