回归与分类的区别
和分类问题一样,回归问题也是预测目标值的过程。回归与分类不同点在于,前者预测连续型变量,后者预测离散型变量。
线性回归
- 结果易于理解
- 对非线性的数据拟合不好
- 适用于数值型和标称型数据
线性回归步骤
- 将标称型数据编码为二值数据(one-Hot编码)
- 训练算法得到回归系数
- 利用 R2 评价模型
- 使用回归系数预测数据
回归系数
对于给定的训练数据集 x 如何训练得到回归系数 w 呢?常用的是采用平方误差最小原则,也就是:
用矩阵表示可以表示为 (y−Xw)T(y−Xw) 。对 w 求导,有
w^=(XT