个人对大端与小端的理解

大端: BigEndian

小端: LittleEndian

这是数据在内存中的两种存储方式,搞不清楚高低位和高低内存地址的对应关系,就分不清楚两种方式的区别。

那么,什么是高位,什么是低位?

我们抛开内存地址不说,比如四字节int a = 0x01020304,0x01就是a的高位,0x04就是a的低位。

其实不必纠结为什么要这么存储,只需掌握如何存储属于大端以及如何存储属于小端即可。

窃以为,这里的就是指非单字节类型的数据的低位。注意,这里强调是非单字节,因为单字节类型是不存在大端小端之说的,比如char类型,它

在内存里就一个字节,也就不存在高低位。

a这个值由四个字节组成,0x01, 0x02, 0x03, 0x04,那么它在内存中如何存储呢?哪个字节放在低地址,哪个放在高地址呢?

比如我们有一个char buf[4]的内存区,自然地,buf[0]的内存地址最小,buf[3]最大。

那我们把a=0x01020304这个数据拷贝到buf内存区里,如果buf[0]=.0x04,也就是低位(端)在低地址(小地址),那么存储方式就是小端模式;

反之,如果buf[0]=0x01,buf[3] =0x04,则是大端了,因为低位(端)0x04在高地址(大地址)。

低位(端)4放在内存的低地址(小地址),就是小端。

低位(端)4放在内存的高地址(大地址),就是大端。

直到现在,碰到这两个概念我都要先想一下。只能理解记忆。

下面上一段go的代码帮助理解:

package main

import (
	"bytes"
	"encoding/binary"
	"fmt"
)

func main() {
	a := uint32(1)

	buf1 := new(bytes.Buffer)
	binary.Write(buf1, binary.BigEndian, a)
	fmt.Println("buf1: ", buf1.Bytes())

	buf2 := new(bytes.Buffer)
	binary.Write(buf2, binary.LittleEndian, a)
	fmt.Println("buf2: ", buf2.Bytes())
}

//输出如下
buf1:  [0 0 0 1]
buf2:  [1 0 0 0]

上面代码中,a的16进制是0x00000001,低位1在两种模式下分别存储在高地址和低地址。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值