re 模块
re模块的使用过程
import re
使用match方法进行匹配操作
result = re.match(正则表达式,要匹配的字符串)
如果上一步匹配导数据的话,可以使用group方法来提取数据
result.group()
匹配字符
示例2:+
例:.
import re
ret = re.match(".","M")
print(ret.group())
ret = re.match("t.o","too")
print(ret.group())
ret = re.match("t.o","two")
print(ret.group())
运行结果:
M
too
two
例2:[]
匹配0到9第一种写法
ret = re.match("[0123456789]Hello Python","7Hello Python")
print(ret.group())
7Hello Python
例3:\d
ret = re.match("嫦娥\d号","嫦娥2号发射成功")
print(ret.group())
嫦娥2号
匹配个数
例1:*
import re
ret = re.match("[A-Z][a-z]*","M")
print(ret.group)
M
ret = re.match("[A-Z][a-z]*","MnnM")
print(ret.group())
Mnn
示例2:+
需求:匹配出,变量名是否有效
import re
names = ["name1", "_name", "2_name", "__name__"]
for name in names:
ret = re.match("[a-zA-Z_]+[\w]*",name)
if ret:
print("变量名 %s 符合要求" % ret.group())
else:
print("变量名 %s 非法" % name)
运行结果:
变量名 name1 符合要求
变量名 _name 符合要求
变量名 2_name 非法
变量名 __name__ 符合要求
示例3:?
需求:匹配出,0到99之间的数字
import re
ret = re.match("[1-9]?[0-9]","7")
print(ret.group())
ret = re.match("[1-9]?\d","33")
print(ret.group())
ret = re.match("[1-9]?\d","09")
print(ret.group())
示例3:?
需求:匹配出,0到99之间的数字
import re
ret = re.match("[1-9]?[0-9]","7")
print(ret.group())
ret = re.match("[1-9]?\d","33")
print(ret.group())
ret = re.match("[1-9]?\d","09")
print(ret.group())
运行结果:
7
33
0 # 这个结果并不是想要的,利用$才能解决
示例4:{m}
需求:匹配出,8到20位的密码,可以是大小写英文字母、数字、下划线
import re
ret = re.match("[a-zA-Z0-9_]{6}","12a3g45678")
print(ret.group())
ret = re.match("[a-zA-Z0-9_]{8,20}","1ad12f23s34455ff66")
print(ret.group())
运行结果:
12a3g4
1ad12f23s34455ff66
题目1:匹配出163的邮箱地址,且@符号之前有4到20位,例如hello@163.com
import re
ret = re.match("[\w]*@+[0-9]{3}\.com","hello@163.com")
print(ret.group())
打印结果:
hello@163.com
匹配开头结尾
示例1:$
需求:匹配163.com的邮箱地址
import re
email_list = ["xiaoWang@163.com", "xiaoWang@163.comheihei", ".com.xiaowang@qq.com"]
for email in email_list:
ret = re.match("[\w]{4,20}@163\.com", email)
if ret:
print("%s 是符合规定的邮件地址,匹配后的结果是:%s" % (email, ret.group()))
else:
print("%s 不符合要求" % email)
xiaoWang@163.com 是符合规定的邮件地址,匹配后的结果是:xiaoWang@163.com
xiaoWang@163.comheihei 是符合规定的邮件地址,匹配后的结果是:xiaoWang@163.com
.com.xiaowang@qq.com 不符合要求
mail_list = ["xiaoWang@163.com", "xiaoWang@163.comheihei", ".com.xiaowang@qq.com"]
for email in email_list:
ret = re.match("[\w]{4,20}@163\.com$", email)
if ret:
print("%s 是符合规定的邮件地址,匹配后的结果是:%s" % (email, ret.group()))
else:
print("%s 不符合要求" % email)
xiaoWang@163.com 是符合规定的邮件地址,匹配后的结果是:xiaoWang@163.com
xiaoWang@163.comheihei 不符合要求
.com.xiaowang@qq.com 不符合要求
元字符串
正则表达式使用反斜杠" \ "来代表特殊形式或用作转义字符,
这里跟Python的语法冲突,因此,Python用" \\ "表示正则表达式中的" \ ",
因为正则表达式中如果要匹配" \ ",需要用\来转义,变成" \
而Python语法中又需要对字符串中每一个\进行转义,所以就变成了" \\ "。",
匹配分组
示例1:|
需求:匹配出0-100之间的数字
import re
ret = re.match("[1-9]?\d","8")
print(ret.group()) # 8
ret = re.match("[1-9]?\d","78")
print(ret.group()) # 78
#不正确的情况
ret = re.match("[1-9]?\d","08")
print(ret.group()) # 0
#修正之后的
ret = re.match("[1-9]?\d$","08")
if ret:
print(ret.group())
else:
print("不在0-100之间")
#添加|
ret = re.match("[1-9]?\d$|100","8")
print(ret.group()) # 8
ret = re.match("[1-9]?\d$|100","78")
print(ret.group()) # 78
ret = re.match("[1-9]?\d$|100","08")
#print(ret.group()) # 不是0-100之间
ret = re.match("[1-9]?\d$|100","100")
print(ret.group()) # 100
示例2:( )
需求:匹配出163、126、qq邮箱
import re
ret = re.match("\w{4,20}@163\.com$", "test@163.com")
print(ret.group()) # test@163.com
ret = re.match("\w{4,20}@163|126|qq\.com$", "test@163.com")
print(ret.group())
ret = re.match("\w{4,20}@163|126|qq\.com$", "test@126.com")
# print(ret.group()) # 会产生异常,想想为什么?
ret = re.match("\w{4,20}@(163|126|qq)\.com$", "test@126.com")
print(ret.group()) # test@126.com
ret = re.match("\w{4,20}@(163|126|qq)\.com$", "test@qq.com")
print(ret.group()) # test@qq.com
ret = re.match("\w{4,20}@(163|126|qq)\.com$", "test@gmail.com")
if ret:
print(ret.group())
else:
print("不是163、126、qq邮箱") # 不是163、126、qq邮箱
不是以4、7结尾的手机号码(11位)
import re
tels = ["13100001234", "18912344321", "10086", "18800007777"]
for tel in tels:
ret = re.match("1\d{9}[0-35-68-9]", tel)
if ret:
print(ret.group())
else:
print("%s 不是想要的手机号" % tel)
ret = re.match("([^-]*)-(\d+)","010-12345678")
ret.group()
'010-12345678'
ret.group(1)
'010'
ret.group(2)
'12345678'
示例3:\number
需求:匹配出hh
import re
# 能够完成对正确的字符串的匹配
ret = re.match("<[a-zA-Z]*>\w*</[a-zA-Z]*>", "<html>hh</html>")
print(ret.group())
# 如果遇到非正常的html格式字符串,匹配出错
ret = re.match("<[a-zA-Z]*>\w*</[a-zA-Z]*>", "<html>hh</htmlbalabala>")
print(ret.group())
# 正确的理解思路:如果在第一对<>中是什么,按理说在后面的那对<>中就应该是什么
# 通过引用分组中匹配到的数据即可,但是要注意是元字符串,即类似 r""这种格式
ret = re.match(r"<([a-zA-Z]*)>\w*</\1>", "<html>hh</html>")
print(ret.group())
# 因为两对<>中的数据不一致,所以没有匹配出来
test_label = "<html>hh</htmlbalabala>"
ret = re.match(r"<([a-zA-Z]*)>\w*</\1>", test_label)
if ret:
print(ret.group())
else:
print("%s 这是一对不正确的标签" % test_label)
提取区号和电话号码
ret = re.match("([^-]*)-(\d+)","010-12345678")
ret.group()
'010-12345678'
ret.group(1)
'010'
ret.group(2)
'12345678'
不是以4、7结尾的手机号码(11位)
import re
tels = ["13100001234", "18912344321", "10086", "18800007777"]
for tel in tels:
ret = re.match("1\d{9}[0-35-68-9]", tel)
if ret:
print(ret.group())
else:
print("%s 不是想要的手机号" % tel)
示例4:\number
需求:匹配出
www.itcast.cn
import re
labels = ["<html><h1>www.itcast.cn</h1></html>", "<html><h1>www.itcast.cn</h2></html>"]
for label in labels:
ret = re.match(r"<(\w*)><(\w*)>.*</\2></\1>", label)
if ret:
print("%s 是符合要求的标签" % ret.group())
else:
print("%s 不符合要求" % label)
运行结果:
<html><h1>www.itcast.cn</h1></html> 是符合要求的标签
<html><h1>www.itcast.cn</h2></html> 不符合要求
示例5:(?P) (?P=name)
需求:匹配出 <html><h1>www.itcast.cn</h1></html>
import re
ret = re.match(r"<(?P<name1>\w*)><(?P<name2>\w*)>.*</(?P=name2)></(?P=name1)>", "<html><h1>www.itcast.cn</h1></html>")
ret.group()
ret = re.match(r"<(?P<name1>\w*)><(?P<name2>\w*)>.*</(?P=name2)></(?P=name1)>", "<html><h1>www.itcast.cn</h2></html>")
ret.group()
注意:(?P<name>)和(?P=name)中的字母p大写
re模块的高级用法
search
功能:按照需求,在整个字符串中查找,而不一定是从开头
需求:匹配出文章阅读的次数
import re
ret = re.search(r"\d+", "阅读次数为 9999")
ret.group()
运行结果:
'9999'
ret = re.findall(r"[A-Z][a-z]+","MyName")
ret2 = [x.lower() for x in ret]
print(ret2)
['my', 'name']
match是从头开始匹配,而search搜索是只要包含即可提取
findall
功能:查询所有
需求:统计出Python、C、C++相应文章阅读的次数
import re
ret = re.findall(r"\d+","python = 999, c = 7890, c++ = 12345")
print(ret)
运行结果:
['9999', '7890', '12345']
sub
功能:按照规则去查询字符串,并且将匹配到的数据进行替换
需求:将匹配到的阅读次数加1
方法1:
import re
ret = re.sub(r"\d+", ‘998’, “python = 997”)
print(ret)
运行结果:
python = 998
方法2:
import re
info = "要想治疗腰间盘,请致电:13140000123,包您身心健健康康,腰好了Ta也就好了"
def replace_star(ret):
"""
将获取的手机号中间4位改为*
:return:
"""
if ret:
phone_num = ret.group()
phone_num = phone_num[:3] + "*"*4 + phone_num[7:]
return phone_num
ret = re.sub(r"\d{11}", replace_star, info)
print(ret)
运行结果:
要想治疗腰间盘,请致电:131****0123,包您身心健健康康,腰好了Ta也就好了
从下面的字符串中取出文本
<div>
<p>岗位职责:</p>
<p>完成推荐算法、数据统计、接口、后台等服务器端相关工作</p>
<p><br></p>
<p>必备要求:</p>
<p>良好的自我驱动力和职业素养,工作积极主动、结果导向</p>
<p> <br></p>
<p>技术要求:</p>
<p>1、一年以上 Python 开发经验,掌握面向对象分析和设计,了解设计模式</p>
<p>2、掌握HTTP协议,熟悉MVC、MVVM等概念以及相关WEB开发框架</p>
<p>3、掌握关系数据库开发设计,掌握 SQL,熟练使用 MySQL/PostgreSQL 中的一种<br></p>
<p>4、掌握NoSQL、MQ,熟练使用对应技术解决方案</p>
<p>5、熟悉 Javascript/CSS/HTML5,JQuery、React、Vue.js</p>
<p> <br></p>
<p>加分项:</p>
<p>大数据,数理统计,机器学习,sklearn,高性能,大并发。</p>
</div>
参考答案:
re.sub(r"<[^>]*>| |\n", "", test_str)
split
功能:根据匹配进行切割字符串,并返回一个列表
需求:切割字符串“info:xiaoZhang 33 shandong”
import re
ret = re.split(r"😐 ",“info:xiaoZhang 33 shandong”)
print(ret)
运行结果:
['info', 'xiaoZhang', '33', 'shandong']
python贪婪和非贪婪
Python 里的数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;
非贪婪则相反总是尝试匹配尽可能少的字符。
在“*”,“?”,“+”,“{m,n}” 后面加上?,使贪婪变成非贪婪。
非贪婪操作符“?”,这个操作符可以用在"*","+","?"的后面, 要求正则匹配的越少越好。
re.match(r"aa(\d+)","aa2343ddd").group(1)
'2343'
re.match(r"aa(\d+?)","aa2343ddd").group(1)
'2'
re.match(r"aa(\d+)ddd","aa2343ddd").group(1)
'2343'
re.match(r"aa(\d+?)ddd","aa2343ddd").group(1)
'2343'
r的作用
mm = "c:\\a\\b\\c"
mm
'c:\\a\\b\\c'
print(mm)
c:\a\b\c
re.match("c:\\\\",mm).group()
'c:\\'
ret = re.match("c:\\\\",mm).group()
print(ret)
c:\
ret = re.match("c:\\\\a",mm).group()
print(ret)
c:\a
ret = re.match(r"c:\\a",mm).group()
print(ret)
c:\a
ret = re.match(r"c:\a",mm).group()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'group'
说明
Python中字符串前面加上 r 表示原生字符串,
与大多数编程语言相同,正则表达式里使用"“作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符”",那么使用编程语言表示的正则表达式里将需要4个反斜杠\:前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。
Python里的原生字符串很好地解决了这个问题,有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。
ret = re.match(r"c:\\a",mm).group()
print(ret)
c:\a